
 
 

CLIMATE CHANGE IMPACTS, VULNERABILITY AND 

INSURANCE IN MALAWI’S SMALLHOLDER AGRICULTURE  

 

 

 

DOCTOR OF PHILOSOPHY (ECONOMICS) THESIS 

 

 

 

ASSA MULAGHA MAGANGA 

 

 

 

 

UNIVERSITY OF MALAWI 

 

 

 

MARCH 2022 



 
 

 

 

 

CLIMATE CHANGE IMPACTS, VULNERABILITY AND INSURANCE IN 

MALAWI’S SMALLHOLDER AGRICULTURE  

 

 

 

DOCTOR OF PHILOSOPHY (ECONOMICS) THESIS 

 

 

By 

 

 

ASSA MULAGHA MAGANGA 

(BSc Agric. Econ., MSc Agric Econ -  University of Malawi, University of Pretoria) 

 
 

 

A Thesis Submitted to the Department of Economics, Faculty of Social Science in partial 

fulfillment of requirements for award of the Degree of Doctor of Philosophy in 

Economics 

 

University of Malawi 

 

 

 

March  2022



 
 

DECLARATION 

I, Assa Mulagha-Maganga, declare that this thesis is a result of my own original effort and 

work and that, to the best of my knowledge, the findings have never been previously 

presented to the University of Malawi or elsewhere for the award of any academic 

qualification. Where other sources of information have been used, it has been accordingly 

acknowledged.  

 

Assa Mulagha-Maganga 

__________________________________ 

 

 

____________________________________ 

Signature 

 

____________________________________  

(Day/Month/Year) 

 

 

 

 



 
 

CERTIFICATE OF APPROVAL 

The undersigned, certify that this thesis represents the student’s onw work and effort. 

Where he has used other sources of information , it has been dully acknowledged. This 

thesis has been submitted with our approval. 

 

Signature: ______________________________ Date: _______________________ 

Levison Chiwaula, PhD (Professor of Economics) 

First Supervisor 

 

Signature: ______________________________ Date: _______________________ 

Patrick Kambewa, PhD (Associate Professor of Economics) 

Second Supervisor 



 
 

DEDICATION 

 

Memory, Tobin and Reyan 

  

 

 

 



 
 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to express my thanks to all those who helped me with 

various aspects of conducting this research and putting up this thesis. First and foremost, I 

am grateful for working with the insightful, knowledgeable winning team of supervisors - 

Associate Professor Levison Chiwaula and Associate Professor Patrick Kambewa. I started 

the work with no clear direction required at this level. Their continuous doses of advice and 

motivation throughout the process enabled me to write up to the last sentence of this report. 

I also owe them a debt of gratitude for always being available and open to listening to my 

ideas and interests and providing timely feedback. I am also grateful to the department for 

arranging several seminars in which earlier versions  of this work were initially presented 

and stirred debates that changed the trajectory of various chapters.  

 

I would like to thank Dr W. Masanjala, late Professor Ephraim Chirwa, Professor Ronald 

Mangani, Dr Spy Munthali, Dr Jacob Mazalare, Professor Ben Kaluwa, Professor Michael 

Carter (University of California, Davis), Dr Heather Moylen – (The World Bank), Professor 

Remi Jedwab (George Washington University), Dr Talip Kilic (The World Bank), 

Professor Malcolm Keswell – (University of Cape Town), for making themselves available 

each time I needed their help and advice. Lastly, I would like to thank my family for being 

my social capital and anonymous reviewers for manuscripts extracted and published from 

this thesis. Their comments were valuable. 

 



 
 

Despite all these numerous assistances from supervisors, professors, colleagues, friends 

and family, the errors and shortcomings remaining in the document are all mine. 



vi 
 

ABSTRACT 

The study seeks to understand the dynamics of climate impact on crop agriculture, with 

each chapter addressing a specific topic related to the theme. Chapter 2 examines the 

current and simulates future economic impacts of climate change on Malawi’s smallholder 

agriculture using Ricardian analysis based on a three-year panel (2010, 2013, 2016) for 

World Bank’s Living Standards Measurement Survey (LSMS) data from 3,531 farming 

households. The results reveal that more warming negatively affects agriculture returns on 

the one hand. In contrast, more precipitation generates gains on the other hand. Simulation 

reveals that global warming impacts will be more critical than precipitation change. With 

strategic climate adaptation choices. Chapter 3 assesses the magnitude of climate-induced 

vulnerability to expected poverty among farming households and how climate change 

shocks relate to ex-post poverty and poverty transition. Vulnerability is strongly associated 

with short-run climate stresses and less so with long-run climate-related shocks. The effects 

of vulnerability on actual poverty lessen with time in the long run. Similarly, climate-

related stresses worsen the welfare of farming households. The result underscores the 

importance of livestock in buffering against poverty. Chapter 4 establishes farmers’ 

willingness to pay for weather index insurance for a staple food crop using a contingent 

valuation experiment. Using data from 10 districts in Malawi, estimates of willingness-to-

pay are in the range of US$5.5 to US$15 per hectare per cropping season. At the infancy 

stage, government subsidies for insurance premiums and linkage of premium payments to 

Village Savings Groups will be crucial. 
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CHAPTER 1 

 INTRODUCTION 

 

1.1 General Overview 

In rain-fed agricultural communities, climate change has substantial impacts on agriculture 

output. Optimal climate conditions for dry-land crop production, including the proper 

amount of warming and rainfall during the production cycle, are critical factors for 

agriculture outcomes. The emerging literature on climate change hot spot analysis predicts 

increases in warming of 2oC to 3oC by 2050 and a general decline in rainfall and water 

availability (UNFCCC 2006). It is projected that these changes will affect food and water 

resources that are critical for livelihoods (Hassan and Nhemachena 2008).  The developing 

regions like Sub-Saharan Africa (SSA) has been dominated by countries whose economies 

heavily rely on rain-fed agriculture for employment and food security (Livingston, 

Schonberger and Delaney 2011). Given the importance of the contribution of the 

agriculture sector to the national economy and people’s incomes and consumption, climate 

impacts on crop production will have negative livelihood outcomes for smallholder farmers 

(Chalise, et al. 2017) 

 

There is also a large body of literature providing evidence that southern Africa is vulnerable 

to climate change. However, few rigorous studies have focused on the economic impacts 

of climate change on agriculture (Mutsvangwa, 2011; Jain, 2007; Gbetibouo & Hassan, 
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2005).  Methodologies used in most of these studies are restrictive. Thus, one of the 

objectives of this study is to measure the current and future economic impact of climate 

change on smallholder agriculture. In this regard, this study makes two key contributions 

to literature. First, it attempts to quantify the economic impacts of climate change on 

agriculture by focusing on Malawi in Southern Africa. The second contribution is 

methodological. It modifies the Ricardian model for the estimation of impacts while taking 

care of farm-level technical inefficiencies.  

 

It is believed that the effects of climate-related extreme events on the economic lives of 

farming households have intensified in recent years, most significantly due to global 

warming (Barnett and Mahul 2007), in turn exposing farmers to poverty-related 

vulnerabilities. The need arises to understand the nature and extent of vulnerability to the 

climate impacts on farming households in general to aid documentation and packaging of 

practical and workable adaptation strategies to mitigate negative climate change impacts. 

Climate variability will relay greater vulnerability on most of the farmers in developing 

countries, not because the level of climate variability is high, but because of over-

dependence on rain-fed agriculture. Despite this importance, studies on the vulnerability of 

farming households to climate change are limited in the tropics. For Africa in general, a 

few studies have assessed the vulnerability of households to climate shocks (Mansour and 

Hachicha 2014, Dercon 2004, Dercon 2005, Hoddinott and Quisumbing 2003). While these 

studies are informative, their coverage is limited to a few countries. The second objective 

of this study is, therefore, to examine farmers vulnerability to poverty under climate-

induced stresses in Malawi. 
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Given the intensity of climate-related shocks, agriculture risk management is becoming a 

contemporary issue as variability in climate is predicted to worsen in the future, which will 

pose further increasing uncertainties on agriculture output and performance of the 

agriculture sector in general (Antón, et al. 2013). In developing countries, weather index 

crop insurance has emerged as one potential sustainable risk management strategy for 

farmers that transfers climate triggered risks from farmers to insurance brokers (Barnett 

and Mahul 2007). It is a better option than traditional crop insurance because it reduces the 

risk of adverse selection and moral hazard. Therefore, the provision of index-based crop 

insurance to farmers could be a sustainable risk management strategy that can cushion or 

offer long-run income growth for farmers in low-income countries (Cole, et al. 2013). As 

efforts to help farmers to manage climate risks through subscription to weather index 

insurance are in infancy, an initial understanding of the farmers' willingness to pay a 

premium for index insurance services is a first step to shape proper packaging of the 

weather index policy. Thus, the last objective of this study is to elicit farmers’ willingness 

to pay for weather index insurance in Malawi for maize crop. 

 

1.2 Organization of the Thesis 

This thesis is organized into five chapters. The current chapter presents a general 

introduction to the chapters that follow and provides an outline of the thesis. While the 

general theme of this thesis is climate impact on crop agriculture, each chapter is meant to 

be a stand-alone by addressing a specific topic. 

 



4 
 

The first study, Chapter 2, enumerates the economic impacts of climate change on 

smallholder agriculture. The study uses three-wave panel data between 2010 to 2016.  First, 

I estimate the technical efficiency of farmers among smallholder farmers. In turn, the 

efficiency scores are used to adjust the Ricardian Model in the estimation of climate 

impacts. Using Global Circulation Models and various emission scenarios, I calibrate future 

impacts of climate change on agriculture.  

 

Chapter 3 assesses the poverty vulnerability of farmers to climate-related shocks. In this 

chapter, I quantify the magnitude of climate stress-induced vulnerability to poverty among 

farming households. Second, I quantify the effects of ex-ante climate stress-induced 

vulnerability on ex-post poverty and also the relative effects on climate-related stresses on 

poverty transition between 2010 to 2016. 

 

Chapter 4 consolidates a particular risk management strategy which is index insurance. The 

motivation is that climate risk management through subscription to weather index insurance 

is in its infancy. Thus, an initial understanding of the farmers' willingness to pay a premium 

for the insurance services is a first step to shaping the proper packaging of the weather 

index policy. In this chapter, I identify the determinants of the willingness of farmers to 

pay for Weather Index Insurance. In turn, I estimate the mean Willingness to Pay for 

weather index insurance and compare estimates from parametric and non-parametric 

methods. 

 

Finally, in chapter 5, a summary and some general conclusions are presented. 
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CHAPTER 2 

ECONOMIC IMPACT OF CLIMATE CHANGE: 

ECONOMIC IMPACT OF CLIMATE CHANGE ON SMALLHOLDER CROP 

AGRICULTURE 

 

2.1 Introduction 

2.1.1 Background 

Climate change has threatened economies that heavily depend on agriculture and forest 

sectors for rural livelihoods, which has, in turn, preconditioned farmers to adopt strategies 

that can reinforce their individual resilience to climate change impacts (Rosenzweig & 

Parry, 1993; Gbetibouo & Hassan, 2005; Kurukulasuriya, et al., 2006). With regard to the 

agricultural sector, climate change will have agrarian impacts on agricultural production, 

which will, in turn, have trickle-down effects on agriculture commodity prices, demand, 

trade, regional competitive edge, and welfare effects on both demand and supply. These 

agro-economic impacts will predominantly depend on the extent of climate change and the 

region’s capacity to assimilate the climate change impacts (Xiang, Takahashi, Suzuki, & 

Kaiser, 2011).  

 

Sub-Saharan Africa (SSA) has been dominated by countries whose economies heavily rely 

on agriculture for employment and food security (Livingston, Schonberger, & Delaney, 

2011). Although the agriculture sector has a large number of small-scale farmers, they 
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mostly produce under unfavourable climatic (low precipitation and high temperatures) and 

environmental (low soil fertility) conditions (Mutsvangwa, 2011). With regard to climate 

conditions, the need arises to understand the nature and extent of the impacts on agriculture 

in general, and the small-scale agriculture in particular to aid documentation and 

development of practical and plausible means of enhancing communities’ capacity to 

reduce vulnerability and to mitigate negative climate change impacts. 

 

Malawi, like most countries in southern Africa, has not been spared by climate change and 

variability and is one of the most vulnerable countries. A survey of historical climate data 

from the World Bank shows that there has been an increasing trend of mean annual 

temperature. From the mid-1970s, the increase in warming (oC) intensified while there was 

a gradual decline in annual rainfall (Figure 2.1).  

 

Figure 2.1: Historical movements of mean annual temperature and rainfall in Malawi 

 

Recent literature on climate change models and hot spot analysis suggests potential 

increases in warming of 2oC to 3oC by 2050 and a general decline in rainfall and water 
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availability in the country (UNFCCC, 2006). It is expected that such climatic changes will 

affect food and water resources that are critical for livelihoods (Hassan & Nhemachena, 

2008).  According to (Kadji, Verchot, & Markensen, 2006) the increasing temperatures 

coupled with reductions and high variability in rainfall will consequently lead to a decline 

in crop (cereal) production in selected areas. Given the importance of the contribution of 

the agriculture sector to the national economy and people’s incomes and consumption, the 

climate impacts on crop production will have social and economic concerns (Chalise, 

Naranpanawa, Bandara, & Sarker, 2017). These impacts will trickle down to other non-

agriculture sectors and further exacerbate economic stresses and challenges on households 

that are already poor (IPCC, 2013). 

 

Climate change impacts vary spatially across a diverse range of agro-ecological scales.  

Unlike the urban sector, climate risks are more acute in the rural because of high poverty 

levels and heavy reliance on sectors that are very sensitive to changes in climate variables, 

low education level, inadequate institutional and economic capacities (IPCC, 2007; 

UNFCCC, 2006; Preston, et al., 2008). It is reasonable, therefore, to expect that any 

unfavourable impacts will be more prominent among the poor whose social welfare 

systems are fragile and predominantly sustain their livelihoods from farming, especially 

rain-fed farming since it is highly susceptible or sensitive to climate variability (Calzadilla, 

Zhu, Rehdanz, Tol, & Ringler, 2013; Bandara & Cai, 2014). Consequently, they are hooked 

in a cycle of poverty with limited escape holes. The resilience of agriculture will depend 

on producers' capacity to systematically adapt their agriculture systems to changing 

environmental and economic conditions. This will be of particular importance as climate 
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shifts change the nature and magnitude of these environmental shocks. Those that may not 

adapt will incur economic losses over time, and ultimately this will threaten the economic 

viability of their future agriculture ventures. 

 

2.1.2 Problem Statement  

Although clear evidence exists that southern Africa is vulnerable to climate change, few 

studies have focused on the economic impacts of climate change on agriculture 

(Mutsvangwa, 2011; Jain, 2007; Gbetibouo & Hassan, 2005). Most of the related studies 

have focused on developed countries in Europe, the United States, China, Australia despite 

that the poor countries, most of those in Southern Africa, whose mainstay is agriculture, 

will be hardest hit by the effects of climate change (Bandara & Cai, 2014; Kahsay & 

Hansen, 2016; Parry, Rosenzweig, Iglesias, Livermore, & Fischer, 2004; Schellnhuber, et 

al., 2013; Wheeler & Von Braun, 2013). Particularly in Malawi, most of the existing 

information on climate impacts on agriculture is qualitative and limited. No study, to the 

knowledge of the author, has quantitatively enumerated the economic impacts of climate 

change on agriculture. It is this backdrop that has stirred this direction of research.  

 

This chapter makes two key contributions to the body of knowledge. First, it attempts to 

quantify the economic impacts of climate change on agriculture by focusing on Malawi in 

Southern Africa. Lack of research on assessing the economic impacts of climate change on 

Malawian agriculture presents an important limitation when it comes to formulating 

appropriate policy options and response packages to mitigate against climate impacts on 

smallholder farming. Despite the universal consensus of the impacts of climate change on 
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agriculture, the Malawi case hasn’t been studied to date. The study, therefore, takes space 

to analyze the economic impacts of climate change on agricultural production in Malawi.  

 

The second contribution is methodological. There are different approaches that have 

previously been used in climate impact assessment, and these are reviewed, in terms of 

their relative strengths and weaknesses, in the next section of literature reviews. These 

include agronomic, computable general equilibrium and Ricardian methods. The Ricardian 

approach uses the profit function (Mendelsohn & Nordhaus, 1996), which, from economic 

theory, assumes that the farmer’s production function is operating on the frontier and any 

deviations are attributed to effects of climate change. This study relaxes this assumption 

and allows the data to speak for itself of whether the farmer is operating on the frontier and, 

if not, eliminate the biases from technical inefficiencies. This study addresses these 

problems by using a two-stage estimation of a Ricardian Model. In the first stage, a 

technical efficiency model is estimated from which technical inefficiency scores are 

derived and used as inputs into the second stage for correcting the technically inefficient 

output in the Ricardian model. Thus, differential output as a result of farmer specific 

inefficiencies for farmers facing similar climates are eliminated, and thus, any further 

differences could be attributed to climate effects.  

 

2.1.3 Objective of the Study 

2.1.3.1 Main Objective 

The overall objective of this study is to measure the economic impact of climate change 

on smallholder agriculture. 
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2.1.3.2 Specific Objectives 

i. To assess the impact of climate change on crop agriculture when there is 

technical efficiency. 

ii. To simulate future effects of climate change on returns to crop agricultural 

enterprises.   

 

2.2 Literature Review 

2.2.1 Introduction 

This section reviews those methodologies and empirical literature related to assessing the 

economic impact of global and local climate change. Among other things, this literature 

review further highlights the appropriateness of the Ricardian approach to assess the 

economic impacts of climate change on the agricultural sector.  

 

It has long been known that climate change has impacts on agriculture. There has been a 

burgeoning body of research with different methodologies across disciplines to explain the 

linkages between climate change and agriculture. The field of economics has employed 

different methods to explain changes in climate variables and associated levels of damage 

caused on agriculture so that the findings can shape the policy landscape. These 

methodologies are discussed below. 

 

Assessing the climate change impact on agriculture is the subject of abundant literature 

divided into experimental simulations and cross-sectional analyses (Mendelsohn & Dinar, 

2003; Mendelsohn, 2007). First Agronomic-Simulation studies were kick-started around 
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the 1980s through the 1990s by (Adams, 1989; Kaiser, Riha, Wilks, Rossiter, & Sampath, 

1993; Rosenzweig & Parry, 1994; Adams, Fleming, Chang, McCarl, & Rosenzweig, 1995). 

Ricardian cross-sectional Hedonic models were first championed by (Mendelsohn, 

Nordhaus, & Shaw, 1994). These have further been regrouped into three; agronomic-

simulation models, Computable General Equilibrium models and Ricardian cross-section 

models. From all the three approaches, the take-home message has been that climate change 

reduces the global output level and has been more pronounced in developing areas. The 

following sub-sections review these three approaches in detail. 

 

2.2.2 Agronomic-Simulation models 

Agronomic studies emphasize the dynamic physiological process of plant growth and seed 

formation. These models press their focus on state-space plant growth functions. Plant 

growth potential is linked to temperature (available energy). However, these models do not 

factor in essential variables for plant growth, such as moisture and plant nutrition. 

Furthermore, these models do not endogenize farmer behaviour and economic 

considerations, and sometimes the focus is on a single crop (Adams, 1989; Rosenzweig & 

Parry, 1994). On the other hand, other studies have made departures from agro-simulation 

models (Kaiser, Riha, Wilks, Rossiter, & Sampath, 1993; Adams, Fleming, Chang, McCarl, 

& Rosenzweig, 1995; Schlenker & Roberts, 2006), allowing for crop substitution with a 

profit maximization analysis for different cropping patterns, to correct for the flaws in agro-

simulation models. 
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Agro-simulation models are powerful in that they factor in all weather conditions 

experienced over the entire production season. However, agro-simulation models have two 

weaknesses. The first is high uncertainty levels about the technology (function form) and 

its parameters. The complex nature of these models makes them non-estimable with 

statistical tools (Wallach & Thorburnb, 2014). If it were possible, many agronomists would 

be sceptical about interpreting physiological estimates and possible misspecification and 

bias (Sinclair & Seligman, 2000). Second is a simplifying assumption of the independence 

of a production system to farm managers’ behaviour (Schlenker & Roberts, 2006). In 

reality, farmers adapt their production system to climate change to reduce damages from 

climate change or take advantage of the new opportunities presented by the new climate. 

 

2.2.3 Computable General Equilibrium (CGE) models 

CGE models are a commonly used tool for quantifying the costs and gains from 

environmental policy. The aim is to simulate the interaction between economic activity and 

the environment. Furthermore, these models deal with how environmental policies 

influence technological development and production (Van Ierland, 1999). The CGE 

literature reveals that analysis of climate change impacts and corresponding adaptive 

strategies has taken two routes. First is based on intra-country CGE models that focus on 

domestic impacts, which allows for more detailed analysis in terms of mapping out the 

impacts to the domestic economy (Calzadilla, Zhu, Rehdanz, Tol, & Ringler, 2013; 

Borgomeo, et al., 2018; Elshennawy, Robinson, & Willenbockel, 2016).  Second deals with 

multi-country CGE models at the highly-aggregated level (e.g. GTAP model). The focus is 
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on assessing regional impacts driven by inter-country trade linkages (Ochuodho, Lantz, & 

Olale, 2016; Ouraich & Tyner, 2012). 

 

A price change in the CGE model causes simultaneous reactions in all markets considered 

in a given general equilibrium analysis. This property is essential for the two main 

advantages: the micro foundation and economic feedback processes. The micro foundation 

consists of the three conditions, namely market clearance, zero profit of firms and income 

balance of the households. With the presence of forward and backward feedback for a given 

price change, the models can be used for long-term planning and analysis (Walz & 

Schleich, 2009). A significant weakness of CGE is the use of observations from one year 

to calibrate shift parameters. In addition, the utility and production functions are 

constrained into a particular function form, i.e. constant elasticity of substitution (Sancho, 

2009). These models also use econometric tools to produce parameters that are external to 

the CGE model calibration. These best guess” values add significant uncertainty to the 

model. The chosen elasticity can incredibly influence the sensitivity of the results (West, 

1995). 

 

The available literature reveals several related studies. Others have used a bottom-up CGE 

model for Australia to assess drought impacts (Horridge, Madden, & Wittwer, 2005). This 

model was called The Enormous Regional Model (TERM), which specialized in handling 

highly disaggregated data for several countries. It can aid the analysis of the impacts of 

climate stress shocks for a given region. It models the region as one economy. It 

disaggregates the region into different sectors based on each country’s Input-Output tables.  
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Laborde (2011) analyzed the impacts of climate-induced yield changes on the agriculture 

in South Asia and investigated the potential for trade policy options to mitigate the latter. 

An improved version of the CGE model called MIRAGE CGE was used using two steps. 

In the first stage, the yield was estimated using the IMPACT model for 13 SRES scenarios. 

These were, in turn, introduced as external shocks in the MIRAGE CGE model. The 

benchmarked results are compared with the results from eight different trade policy 

landscapes for the region. Rubin and Hilton (1996) examined the employment impacts of 

climate change on several sectors of Michigan's Pere Marquette Watershed region. 

Rosenberg (1993) examined the climate change impacts on several states in the USA. 

 

Several studies have been undertaken in Africa using the CGE approach to model climate 

impacts. Diao et al. (2008), building on the CGE work of  Roe et al. (2005), used a country-

based CGE model to assess the impacts of conjunctive natural resource management in 

Morocco. The objective of the study was to determine the direct and indirect effects of 

groundwater regulation on agriculture and nonagricultural sectors under different scenarios 

such as (i) increasing costs of extraction, (ii) regional transfers of surface water, and (iii) 

the effect of drought due to water supply. More recently, Mideska (2010) has applied a 

general equilibrium analysis to quantify the impacts of climate change on GDP in Ethiopia. 

 

2.2.4 Ricardian models 

Having explored earlier models, each one has its limitations. Agronomic models are weak 

to capture adaptation and mitigation strategies, and CGE models are highly aggregated. 
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Mendelson et al. (1994) proposed the Ricardian approach to aid the assessment of agrarian 

impacts of climate change while overcoming the limitations of earlier agronomic models. 

The idea behind the proposed model was that there is a correlation between land values and 

climate variables following the work of David Ricard (1772 – 1823).  It first estimates the 

relationship between climate and agricultural land values. As such, an understanding of 

land values across different locations with varying states of climate variables would 

necessitate an understanding of climate impacts on agriculture. The Ricardian approach 

builds on hedonic pricing models. The model makes a simplifying assumption that the 

current value of a parcel of farmland equates to the sum of discounted future rents 

(Schlenker & Roberts, 2006). The difference in farmland values will reflect the difference 

in the productivity of crops grown on it, given the capital and labour quantity. The net 

difference will be the difference in yield value between farmlands of different locations 

facing different climates. With this understanding, David Ricardo puts it that the land value 

is the value of the product from a given piece of land, which is taken as the rent paid by the 

producer for using the land (Onyekuru & Marchant, 2016) 

 

The Ricardian model is a regression of farmland values on a number of variables, i.e. 

climate, economic and other relevant variables (Mendelsohn, Nordhaus, & Shaw, 1994; 

Mendelsohn & Nordhaus, 1996; Adams, Fleming, Chang, McCarl, & Rosenzweig, 1995). 

In a well-behaved marketing system, the value of a parcel of land should reflect its 

profitability. In turn, spatial variation in climate derives spatial variation in land use which 

affect land values (Polsky, 2004) if other factors of production are controlled. This 

background shows that it is possible to establish a quantifiable relationship between climate 
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and farmland values using regression-based methods within the framework of cross-section 

data. The estimated coefficients for the climate variables would reflect the economic value 

of climate to agriculture, given all other factors held constant.  

 

The Ricardian cross-sectional approach automatically nests farmer adaptation strategies by 

including adaptation choices farmers would employ to adapt their operations to a changing 

climate. An important example of farm-level adaptive systems is crop choice, where each 

state of climate would command a different crop that would best suit it. Therefore, a farmer 

is expected to switch crops to suit a given state of climate and, in turn, reduce the impact 

of climate stress on selected crops (Mendelsohn, Nordhaus, & Shaw, 1994; Mendelsohn & 

Nordhaus, 1996; Mendelsohn & A, 1999). With the Ricardian approach, it is possible to 

assess the sensitivity of impacts under two scenarios. You can quantify the climate impacts 

first in the presence of adaptation and second in the absence of adaptation. 

 

The incorporation of adaptation strategies in the Ricardian model reduces the costs of 

climate impacts on agriculture (Polsky, 2004). Adaptation is driven by the knowledge the 

farmer has. A farmer as a rational economic agent will use this knowledge to maximize 

benefits and minimize losses in the presence of climate change. For instance, a standard 

Ricardian model would imply that if growing a maize crop is more profitable than growing 

cassava, in turn, the climate becomes more suitable for cassava than maize. In that case, 

those farmers’ crop choice (adaptation) will reflect the changing climate by drawing on the 

experiences of cassava farmers elsewhere and switching from maize to cassava (Polsky, 

2004; Moniruzzaman, 2015; Wineman & Crawford, 2017). 
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For changes in Ricardian values to exactly capture the value of climatic change, output and 

input prices must remain constant. This is a strict assumption that may not likely work in 

real-world situations. First, private adaptations made by farmers in response to climatic 

change would likely generate supply changes that, in turn, would affect output prices. As 

the theory of firm notes that when product supply increases, there will be a corresponding 

downward shift in its prices and vice versa. The increased production (supply) would also 

mean that the demand for inputs would have also increased. Second, the global climatic 

change would likely affect agricultural resources across countries, consequently affecting 

world prices and the demand for local agricultural commodities (Kane, Reilly, & Tobey, 

1991; Rosenzweig & Parry, 1993; Darwin, Lewandrowski, McDonald, & and Tsigas, 1994; 

1995). 

 

This alone should not in any way make us conclude that a change in Ricardian rents has no 

value. When biases as a result of price changes are not large enough, the corresponding 

changes in Ricardian rents could approximate the true value of climate change in 

agriculture (Darwin, 1999). Mendelsohn and Nordhaus (1996) noted that the bias as a result 

of 25 percent climate triggered a decline in agricultural commodity supply is likely not 

going to exceed 5 percent given constant demand. However, they did not extend their 

analysis to take care of crop demand or supply changes. If large enough, increases in crop 

supply can drive prices of agricultural products below their marginal costs of production, 

causing farmers in some regions to cease production. This relates to another limitation of 

the Ricardian approach; specifically, changes in Ricardian rents do not provide information 

about the welfare implications of climatic change for specific agents. Schimmelpfennig et 
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al. (1996), for example, noted that Ricardian models could not assess how the effect of 

climatic change might be distributed among agricultural producers and consumers. Also, 

international trade can help transfer damages or benefits from one country to another. Such 

information is important to policymakers. To design workable international treaties, 

negotiators need to know the total magnitude of any economic benefits or damages that 

might be incurred under global climatic change and to whom such benefits or damages 

accrue, that is, who wins and who loses from the treaties and given climate scenarios. 

 

2.2.5 Empirical Studies on Climate Change Impacts in Agriculture 

The Ricardian technique for estimating the economic impacts of climate change on 

agriculture has drawn an unusual amount of attention and criticism (Polsky, 2004). The 

approach has been applied in a variety of countries, including Zimbabwe, Zambia, South 

Africa, Cameroon, United States, Canada, England and Wales, India and Brazil, Cameroon, 

China, and Sri Lanka. This section highlights some of the insights provided by this literature 

that shape the present study. While these studies are not specific to crops of focus in this 

study, they still provide insights to shape the landscape of this study.  

 

To begin with, Mendelsohn et al. (1994) novel study sets the base for subsequent studies 

that empirically apply the Ricardian climate analysis approach. By directly observing 

farmland values, they quantified the direct impacts of climate change on agricultural yield 

and farmers’ response in terms of input substitution and choice of different adaptive 

strategies under varying climates. From this, they learnt a quadratic relationship between 

agricultural land values and temperature and precipitation. Their estimates indicate that 
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impacts of global warming in the United States agriculture were lower than those from the 

traditional production function approach, but both were negative.  Their results were 

dependent on the type of model and climate scenario used in the analysis. 

 

A couple of years later, Mendelsonh et al. (1996) refined earlier work of the Ricardian 

model for measuring the agrarian impacts of climate change, focusing on the impact of 

climate change on land prices. The study was based on cross-sectional data in the US again. 

The findings revealed that seasonal temperatures, in all seasons except autumn, increased 

farmland values. Similarly, the estimated impacts of global warning on US agriculture were 

consistent with earlier findings. 

 

Mendelsohn and Dinar (2003), revisited the U.S. case study by Mendelsohn et al. (1994), 

to validate whether surface water extraction could explain the differences in farmland 

values in the United States and whether adding these variables to the Ricardian model could 

alter the sensitivity of agriculture to climate change. Unfortunately, the value of irrigated 

farmland was neutral to precipitation but gained from temperature. The reason was that 

sprinkler systems are used primarily in wet, cool sites, whereas gravity, and especially drip 

systems, helped compensate for higher temperatures. They did not underplay the role of 

irrigation in climate impacts management as it could serve as an adaptation strategy for low 

precipitation related stress. 

 

In African, there has also been a growing number of studies using the Ricardian approach. 

These studies are country-specific, while some focused on several African countries. The 
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early work in Africa by Gbetibouo and Hassan (2005) analyzed the current and predicted 

future impacts of climate change on South African agriculture. They regressed farmland 

value on climate, geo, soil and farmer specific characteristics to characterize the effect of 

private adaption on land values. The analysis was done for several crops across 300 districts 

of South Africa, focusing on maize, wheat, sorghum, sugarcane, groundnut, sunflower and 

soybean. The findings showed that the gains from an increase in temperature were very 

high compared to an increase in precipitation. They did further analysis to check the 

dynamics of impacts across seasons.  It was found the impacts were not distributed 

uniformly across different regions as such private adaptations would require to be different 

for different locations or regions to minimize the climate impacts. The impacts in some 

regions would require a major shift in farmers’ behaviour and practices, including a change 

in the farming calendar and total switch to or dis-adoption of certain crops. Deressa et al. 

(2005) narrowed down the analysis to focus on climate impact on sugarcane production in 

South Africa. While other studies used cross-section data, this study used time series data 

for the period 1977 to 1998. The results indicated that predicted changes in climate 

variables like temperature negatively impacted net revenue from sugarcane production 

compared to changes in precipitation. Irrigation did not play a big role in reducing damages 

when compared dryland conditions and irrigated systems corroborate the earlier finding by 

Mendelsohn and Dinar (2003), in the US.  

 

Within the same southern Africa, a study by Mutsvangwa (2011) used the Ricardian model 

to analyze climate impacts on agriculture in Zimbabwe. The empirical findings revealed a 

strong relationship between temperature, moisture and farm profits in Zimbabwean 
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Agriculture. Rain-fed farming was very sensitive to marginal changes in precipitation, 

whereas irrigated farming was a little more inelastic. The results affirmed the necessity of 

irrigation farming as a solid adaptive strategy to climate change impacts due to moisture 

stress.  A scenarios analysis showed that a rise in warming would reduce farm profits for 

rain-fed farming while it would incur profit gains for irrigated farms. Jain (2007), applying 

the approach to Zambia, showed that an increase in temperature in November and 

December and a reduction in mean precipitation in January and February are negatively 

related to farm profits. In contrast, an increase in mean temperature in January and February 

and an increase in mean annual runoff would benefit farmers.   

 

In East Africa, Deressa (2007) employed the Ricardian model to assess the impacts of 

climate change on Ethiopian agriculture and to explain private adaptations to varying 

environmental factors. The study carried assessment of the sensitivity of farmland values 

to unit changes in precipitation and temperature under varying seasons. In addition, it 

analyzed the impact of even climate scenarios on farmers’ profits per hectare. Furthermore, 

it assessed the impact of predicted climate scenarios on-farm profits for 50 years in the 

future. The findings revealed that Ethiopian agriculture would benefit from increased 

precipitation and declining temperatures.  Similarly, Kabubo-Mariara and Karanja (2007) 

established the same trend between climate variables and farm profits in Kenya. Relating 

to the earlier studies by Jain (2007),  Mutsvangwa (2011) and Deressa et al. (2005) it shows 

that the close to the equator, there are negative impacts of warming as the areas already 

experience high temperatures.  
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In West Africa, Molua and Lambi (2007) assessed the impact of climate change on 

Cameroonian agriculture. The study employed the Ricardian model to quantify a 

relationship between climate and net farm revenue. Their analysis found that farm profits 

declined proportionately with precipitation decreases and was inversely related to 

temperatures. The study reaffirmed that agriculture in Cameroon is often limited by 

seasonality and the availability of water supplies. Although other physical factors, such as 

soil and relief, had a significant influence on agriculture, climate remained the dominant 

predictor of the agricultural enterprise choice. Onyekuru and Marchant (2016), in studying 

impacts on forest resource use in Nigeria, established positive gains from precipitation and 

marginal losses from warming. However, the study registered mixed impacts of 

precipitation across varying seasons, although the net outcome was positive gains.  

 

Seo and Mendelsohn (2007) used a cross-section Ricardian model to quantify the impacts 

of climate change on large and small livestock farms in selected countries in Africa. Their 

findings showed that the large specialized farms were more vulnerable to changes in 

warming and precipitation in comparison with a small farm. The larger farms were learned 

to rely on commercial beef and other species that are not tolerant to high temperatures, 

compared to small farms that have no traditional livestock species like goats and sheep that 

can do better in dry and warm environments.   
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2.3 Methodology 

2.3.1 Theoretical Framework 

There has been a shift in the approach to modelling climate impacts on agriculture. Most 

recent studies on the impact of climate change on agriculture (Mendelsohn, Nordhaus, & 

Shaw, 1994; Mendelsohn & Nordhaus, 1996; Mendelsohn & A, 1999; Liu, Li, Fischer, & 

Sun, 2004; Onyekuru & Marchant, 2016) use the Ricardian analysis following Mendelsohn 

et al., (1994) while most of the earlier studies employed the production function approach 

(Rosenzweig & Iglesias, 1994).  

  

The Ricardian model adopts a production function, f : ℝ+
𝑛  → ℝ+, which is continuous, 

strictly increasing and strictly quasiconcave on ℝ+
𝑛  of the form: 

         𝑦 = 𝑓(𝑥, 𝑒)             (2.1) 

Where y ∈ 𝑌 is a production plan with a feasible output set: 𝑌 ≡ {𝑦 ∈ ℝ+
𝑛−𝑚: (𝑦, −𝑥) ∈ 𝑍  

for some ∈ ℝ+
𝑚}, e is a vector of climate factors. The elements of y indicate the quantities 

of outputs for various commodities and are limited by technical and climate constraints. 

The input requirement set is given by 𝑉(𝑦) ≡ {𝑥 ∈ ℝ+
𝑚: (𝑦, −𝑥) ∈ 𝑍}  for 𝑦 ∈ 𝑌 for a 

feasible output vector y. Similarly, a set of climate factors, e, such as temperature and 

precipitation are given by  𝒬(𝑦) ≡ {𝑒 ∈ ℝ+
𝑘 : (𝑦, −𝑒) ∈ 𝑍}  for 𝑦 ∈ 𝑌. Given a set of factor 

prices, 𝑤 ≫ 0,  e and output levels 𝑦 ∈ 𝑓(ℝ+
𝑛), the farmer’s cost function is the minimum 

value function:  

               min
x∈ℝ+

𝑛
𝑤.𝑥= 𝑐(𝑦,𝑤,𝑒)           𝑠. 𝑡         𝑦=𝑓(𝑥,𝑒)    (2.2) 

The climate vector enters the cost function because it embodies inputs (think of climate 

variables as inputs into production) that either increase or reduce adaptation costs to climate 
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change. We assume that x*≫ 0 and that f is differentiable at x* with ∇𝑓(𝑥∗) ≫ 0. The 

profit function assumes that the farmer’s production f (.) exists at a maximum, while in 

reality, the farmer’s production is affected by farm-specific technical inefficiencies. This 

unrealistic assumption will be relaxed later. Using the cost function at given market prices, 

farm profit a given farmer seeks to maximize is given by; 

𝜋∗(𝑝, 𝑤) = sup {𝜋(𝑥; 𝑝, 𝑤, 𝑒) = 𝑝𝑓(𝑥, 𝑒) − 𝑤⊥𝑥 − 𝑟𝐿: 𝑥 ∈ ℝ+
𝑚}    (2.3) 

Where r is annual cost or rent of land in hectares, L, at a given site, p is output price, x is 

the input vector, w are factor prices. Perfect competition in the land market will drive profit 

to Zero, although this is an ambitious assumption for developing countries (Dinar, et al., 

1998) which will later be clarified. If the farmer is not renting the land from someone else, 

r  assumes a shadow price.  

𝑝𝑖𝑦𝑖
∗ − 𝑐𝑖

∗(𝑦𝑖
∗, 𝑤, 𝑒) − 𝑟𝐿𝑖

∗ = 0                       (2.4) 

If the production of a certain commodity maximizes the net revenue from a piece of land, 

given e (climate variables), the observed market rent on land will be equal to the annual net 

profits from the production of the commodity. Solving for r in equation 2.4 gives net 

revenue per hectare, which is a proxy for land value per hectare. We, therefore, get; 

𝑟 =
𝑝𝑖𝑦𝑖

∗−𝑐𝑖
∗(𝑦𝑖

∗,𝑤,𝑒)

𝐿𝑖
∗                        (2.5) 

Due to the imperfect land market and lack of data on farm land values in Malawi, annual 

net revenue provides a good estimate of r (Liu, Li, Fischer, & Sun, 2004; Dinar, et al., 

1998). Since this is a problem involving a stream of benefits over a long span of time, we 

introduce the concept of the time value of the money discounting factor. Consequently, net 

revenue from the land (VL) will reflect the present value of future net productivity; 

𝑉𝐿 = ∫
𝑝𝑖𝑦𝑖

∗−𝑐𝑖
∗(𝑦𝑖

∗,𝑤,𝑒)

𝐿𝑖
∗

∞

0
𝑒−𝑟𝑡𝑑𝑡       (2.6) 
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In equation 2.6, the interest is to measure the sensitivity of land value (VL) to marginal 

changes in climate variables (temperature and precipitation) or their spatial variation. A 

shock on a climate variable will be transmitted into a change in land values. Consider an 

environmental change from state 1 to 2, which, in turn, causes a change in climate inputs 

from e1 to e2.  A change in profit (∆W) from this climate change is given by: 

𝛥𝑊 = 𝑊(𝑒2) − 𝑊(𝑒1) = ∫ [(𝑝𝑖𝑦𝑖
𝑌2

0
− 𝑐𝑖(𝑦𝑖, 𝑤, 𝑒2)/𝐿𝑖]𝑒

−𝑟𝑡𝑑𝑌 −

∫ [𝑝𝑖𝑦𝑖 −
𝑌1

0
𝑐𝑖(𝑦𝑖, 𝑤, 𝑒1)/𝐿𝑖]𝑒

−𝑟𝑡𝑑𝑌 (2.7) 

Having unchanged output prices, say p0, the consumer welfare (for consumers purchasing 

the commodity in question) is not affected but producer welfare (or the profit per hectare). 

Therefore, the economic welfare change here is measured by the change in the value of the 

land that is caused by the change in environmental factors. In the original work of Ricardian 

analysis of climate change impacts, Mendelsohn et al. (1994) make an assumption that 

market prices do not change in response to change in environmental variables; therefore, 

considering a constant price vector p= [p1, p2, p3 ,...,pm]  the above equation reduces to: 

 

∆𝑊 = 𝑊(𝑒1) − 𝑊(𝑒2) = [𝑝𝑦2 − ∑ 𝑐𝑖(𝑦𝑖, 𝑤, 𝑒2)
𝑛
𝑖=1 − [𝑝𝑦1 − ∑ 𝑐𝑖(𝑦𝑖, 𝑤, 𝑒1)

𝑛
𝑖=1         (2.8) 

 

Manipulating and substituting equation 2.4 into equation 2.8 yields; 

 

𝛥𝑊 = 𝑊(𝑒2) − 𝑊(𝑒1) = ∑ (𝑟2𝐿2𝑖 − 𝑟1𝐿1𝑖)
𝑛
𝑖=1           (2.9) 
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Where r1 denotes the value per hectare of land area L1 in state 1 (baseline), and r2 denotes 

the value per hectare of land area L2 in state 2. Thus, the present value of the welfare 

change is: 

∫ 𝛥𝑊𝑒−𝑟𝑡𝑌

0
𝑑𝑡 = ∑ (𝑉2 − 𝑉1)

𝑛
𝑖=1        (2.10) 

The integral over a closed set [0, y] is the value of the climate change as defined by the 

Ricardian analysis. Empirically, after estimating the base model with baseline climate 

condition, one can examine the value of future climate change by plugging any climate 

change scenario two into the base model (e.g. cooling or warming weather, change in 

precipitation trends). 

 

Given the profit function in (2.3), an assumption that the farmer is operating on production 

frontier (maximum) is lifted because of inherent farmer specific technical inefficiencies. 

Ignoring these inefficiencies could result in biasing the impacts of climate variables on net 

farm revenue. For example, farmers facing the same climate change would still have 

different outputs. As such, a generalized attribution of output differential to climate impacts 

could result in idiosyncratic estimates of climate impacts which embodies both true climate 

impacts and farmer technical inefficiency effects. Thus, in this study, we modify the profit 

function (2.3) by adjusting production plan f(.) for farm-specific technical inefficiencies for 

farmers facing similar climates. This is further explained in section 2.3.2.1, in which I 

include climate-related variables in the model.  

 

Following the recent work on technical efficiency in production (Kumbhakar & Tsionas, 

2006), the production technology can be represented by: 
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        𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡𝑗 , Θ), 𝑖 = 1,… , 𝑛                (2.11)  

Where 𝑦𝑖𝑡 and 𝑥𝑖𝑡𝑗 are defined as scaler output and vector of inputs, respectively, used in 

the production plan, subscript i indexes farmers, t is time, j indexes input type, and Θ =

𝑥𝑖𝑡𝑗
𝑒 /𝑥𝑖𝑡𝑗 ≤ 1 for input  j = 1, …, J is the input-oriented efficiency score vector. The input-

oriented technical inefficiency for a given farm is given by 1 −  Θ = (𝑥𝑖𝑡𝑗 − 𝑥𝑖𝑡𝑗
𝑒 )/𝑥𝑖𝑡𝑗 for 

farmer i and  ∀ 𝑗, which is defined by how much inputs could be reduced without altering 

level of output. Since our interest is output, output-oriented technical efficiency, given 

climate state 𝑒̅ and frontier output  𝑓(𝑥𝑖𝑡𝑗 , 𝑒̅), is represented by:  

       𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡𝑗 , 𝑒̅). 𝛬        (2.12) 

Where 𝛬 is output-oriented technical efficiency scalar which is defined as the ratio of 

observed output to frontier output. Thus, technical inefficiency at a given farm is given by 

1 − 𝛬 = (𝑓(𝑥𝑖𝑡𝑗 , 𝑒̅) − 𝑦𝑖𝑡)/𝑓(𝑥𝑖𝑡𝑗 , 𝑒̅) which shows how much output could be increased 

without altering inputs or climate-related variables. The inefficiency scores are in turn used 

to scale output in (2.3) and end with a profit function whose production function lies on the 

frontier.  

 

2.3.2 Econometric strategy  

This section sets out to present the empirical strategy used to estimate the impacts of climate 

change on agriculture. Building on the theoretical framework above, this is rolled in two 

sections; First, it starts with laying out a procedure of estimating the production function 

and derivation of the technical efficiency scores from the production plan. The second 

subsection presents the methods for estimating the Ricardian model while using the 

estimated efficiency scores as inputs to correct for interior output of a given production set.  
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2.3.2.1 Estimation of technical efficiency scores 

Following Fousekis and Klonaris (2003), the empirical application of the frontier is 

specified in the translog form, which: (i) is locally flexible (offers a second-order 

differential approximation of an arbitrary function); (ii) permits the performance of 

statistical tests on the structure of the underlying production technology; and (iii) 

accommodates the inclusion of the one-sided error to estimate Technical Efficiency (TE) 

for every observation. In general terms, we consider the following production technology 

for output-oriented efficiency measurement or the best practice frontier (Aigner et al. 1977; 

Meeusen and Van der Broeck 1977):  

𝑦𝑖𝑡 = {𝑓(𝑥𝑖𝑡,, Θ𝑖𝑡)}
𝐼𝑖{𝑓(𝑥𝑖𝑡) ∙ 𝛬𝑖𝑡}

1−𝐼𝑖exp (𝑣𝑖𝑡)            (2.13) 

Where vit is the random error term, Ii is a transformation indicator between input or output 

oriented technical efficiency. It takes a value of 1 if we are using input-oriented technical 

efficiency and 0 if it is output-oriented technical efficiency. The index i is a cross-section 

farm unit, and t is the time period for indexing the wave in panel data. Adopting a flexible 

function form, equation (2.13) can be presented in the following form: 

𝑦𝑖𝑡 = 𝐼𝑖𝑡 {𝛽0 + (𝑥𝑖𝑡 − 𝜃𝑖1𝐽)
′
𝛽 +

1

2
(𝑥𝑖𝑡 − 𝜃𝑖1𝐽)

′
𝛤(𝑥𝑖 − 𝜃𝑖1𝐽)} + (1 − 𝐼𝑖𝑡) {𝛽0 + 𝑥𝑖𝑡

′ 𝛽 +

1

2
𝑥𝑖𝑡

′ 𝛤𝑥𝑖𝑡 − 𝜆𝑖𝑡} + 𝑣𝑖𝑡                  (2.14) 

From (2.14), the output-oriented model introduced by Aigner et al. (1977) and now widely 

used in literature, is presented as:  

𝐲𝑖𝑡 = 𝛽0 + 𝒙𝒊𝒕𝒋
′ 𝜷 +

1

2
𝑥𝑖𝑡𝑗

′ 𝛤𝒙𝒊𝒕𝒋 + 𝑥𝑖𝑡𝑗
′ 𝛾𝒙𝒊𝒕𝒌 − 𝜆𝑖𝑡 + 𝑣𝑖𝑡     (2.15) 

Where, 𝜆𝑖𝑡 is the non-negative inefficiency component. vit is assumed to be independently 

and identically distributed, symmetric and independent of vjt. Thus, the composite error 
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term ɛit = vit – 𝜆𝑖𝑡 is asymmetric. The term β  represents the parameter vector of linear terms, 

𝛤 represents the parameter vector of quadratic terms, and 𝛾 represents the parameter vector 

of interaction terms. The Technical Efficiency scores are given by:  

𝑇𝐸 =
𝒚𝑖𝑡

𝒚𝑖𝑡
∗ =

𝐸[𝒚𝑖𝑡|𝜆, 𝒙]

𝐸(𝒚𝑖𝑡|𝜆𝑖𝑡 = 0, 𝒙)
= 𝐸[exp(−𝜆)| 𝑣]                                                    (2.16) 

The production function in (2.15) is assumed to be twice differentiable, and symmetry 

condition is therefore imposed, prior to estimation, according to 𝛾𝑗𝑘 = 𝛾𝑘𝑗. Homotheticity 

and homogeneity of degree 1 is constrained according to ∑𝛽𝑘 = 1, ∑∑𝛾𝑗𝑘 = 0.  

 

Consistency of the production frontier with economic theory requires that production 

function be monotonically increasing and quasi-concave in inputs. If a production frontier 

is not monotonically increasing, the efficiency estimates of the individual firms cannot be 

reasonably interpreted. Monotonicity means that the output quantity must be non-

decreasing. If any input quantity is increased, quasi-concavity guarantees that the marginal 

rates of technical substitution are decreasing. In the case of our empirical translog 

production frontier, monotonicity was held by the following condition: 

𝑑𝑦𝑖𝑡

𝑑𝑥𝑖𝑡𝑗
= 

𝑦𝑖𝑡

𝑥𝑖𝑡𝑗

𝑑 (ln 𝑦𝑖𝑡)

ln( 𝑥𝑖𝑡𝑗)
=

𝑦𝑖𝑡

𝑥𝑖𝑡𝑗
(𝛽 + ∑𝛾𝑗𝑘 ln(𝑥𝑖𝑡)

𝑛

𝑖=1

) ∈ ℝ++ ∀ 𝑖𝑡 ∈ {1, … , 𝑁𝑇}

 

            (2.17) 

A sufficient condition for the monotonicity is checked by second-order test to verify if the 

production frontier is non-decreasing in inputs implying the fulfilment of the following 

expression: 

𝑓𝑗𝑘 =
𝒚

𝒙𝐣𝒙𝐤
× [(𝛽𝑖 + ln𝒙𝑘

′ 𝛽)(𝛽𝑗 + 𝐥𝐧𝒙𝑘
′ 𝛤 − ∆𝑖𝑗) − 𝛤] < 0  ∀ 𝑖𝑡 ∈ {1,… ,𝑁𝑇}  (2.18) 
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Where ∆𝑖𝑗 is the Kronecker delta with ∆𝑖𝑗= 1 if k = j and ∆𝑖𝑗= 0 if k ≠ j. The necessary 

and sufficient condition for a specific curvature rests in the semi-definiteness of the 

bordered Hessian matrix. The Hessian matrix is negative semi-definite at every 

unconstrained local maximum. The conditions of quasi-concavity are related to the fact that 

this property implies a convex input requirement set (Chambers, 1988). Given our twice 

continuously differentiable production function, quasi-concavity is checked using its 

bordered Hessian matrix: 

𝐵 =

[
 
 
 

0 𝑀𝑃1 ⋯ 𝑀𝑃𝑗

𝑀𝑃1 𝑓11 ⋯ 𝑓1𝑗

⋮
𝑀𝑃𝑗

⋮
𝑓𝑗1

⋱
𝑓𝑗2

⋮
𝑓𝑗𝑗 ]

 
 
 

              (2.19) 

Where, 𝑓𝑗𝑘 = 𝜕2𝑓/(𝜕𝑥𝑗𝑥𝑘) is the second derivative of the production function with respect 

to the jth and kth input quantity, MPj is the marginal product of input j. Since all input 

quantities are generally non-negative (𝑥𝑗 ∈ ℝ++ ∀ j), a necessary condition for quasi-

concavity is (Chiang, 1984; Takayama, 1997): 

   |𝐵1| ≤ 0, |𝐵2| ≥ 0, |𝐵3| ≤ 0,… , |𝐵𝑛| × (−1)𝑛 ∈≤ ℝ+ 

If these theoretical underpinnings are jointly fulfilled, the obtained efficiency estimates are 

consistent consequently can be relied upon and used to adjust output in the profit function 

in (2.3). Policy prescriptions based on the Ricardian models adjusted for technical 

inefficiencies is more accurate than when adjustments are ignored.  

2.3.2.2 Estimation of panel Ricardian model 

The panel Ricardian model with time-invariant distinctiveness can be estimated under 

either the fixed effects or random effects framework (Wooldridge, 2002). The choice 

between the two depends on the assumptions imposed on the relationship between the 



34 
 

unobservable individual-specific effect and the covariates. The fixed effects assume the 

existence of correlation while the random-effects lifts up the assumption.  

 

As this study considers three time periods and the farms are distributed across different 

districts of Malawi, the analysis must nest both spatial and temporal scale variation. These 

spatial and time-period specific effects may be treated as fixed effects or as random effects. 

In the fixed-effects model, a dummy variable is introduced for each spatial unit and for 

each time period, except one to avoid perfect multicollinearity (Elhorst, 2014). Following 

Mendelsohn et al. (1994), the Ricardian model of these spatial and temporal effects in a 

two-way fixed effects approach can be presented as: 

𝑉𝑖𝑡 = 𝜓𝑖 + 𝜆𝑡 + 𝒙𝑖𝑡
′ 𝜷 + 𝒆𝑖𝑡

′ 𝜃 + 𝛑𝑖𝑡
′ 𝜙 + 𝑢𝑖𝑡      (2.20) 

Where the dependent variable, 𝑉𝑖𝑡, is net crop income,  𝜓𝑖 = (𝜓𝑖1,⋯ ,𝜓𝑖𝑁)𝑇 is the full district 

effects,  𝜆𝑡 is time effects, 𝑥𝑖𝑡  is a (K x 1) vector of observed determinants of net crop 

income that are time-varying these are listed in Table 2.1 below, 𝜷 is a (1 x K) vector of 

coefficients, 𝒆𝑖𝑡
′  is a vector of linear climate variables that vary by season and space, 

π𝑖𝑡
′ = 𝑒𝑖𝑡

′ 𝑒𝑖𝑡  is the quadratic component of climate variables whose parameter vectors is 𝜙, 

and 𝑢𝑖𝑡 is the random error term. The reasons for including the spatial and time fixed effects 

are two-fold. First, the spatial fixed effects, 𝜆𝑡, can absorb the time-invariant determinants 

of net crop income. Second, the inclusion of spatial indicators, 𝜓𝑖, controls for all spatial-

invariant variables whose omission could bias the estimates in a typical time-series study 

(Baltagi, 2005; Hsiao & Tahmiscioglu, 1997; Arellano, 2003). 
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Treating unbalanced panel data as though it were balanced yields estimates that are 

inconsistent. However, using deviations from within time from each variable, the fixed 

effects OLS estimator on an unbalanced panel is consistent  (Wooldridge, 2002). If the 

assumption that there is no correlation between the covariates and unobserved 

heterogeneity is true, then the estimation of coefficients under random effects framework 

provides more efficient estimates compared to fixed effects (Cameron & Trivedi, 2005; 

Nerlove, 2005). Another advantage of random effects is that the time-invariant variables 

can be included as part of covariates without introducing multicollinearity with the 

constant. When spatial and time-period specific effects are treated as random effects, 𝜓𝑖 

and 𝜆𝑡  are treated as random variables that are independently and identically distributed 

with zero mean and variance and 𝜎𝜓
2  and 𝜎𝜆

2, respectively. Both the fixed effects and 

random effects models were run, and their coefficients were tested using Durbin-Wu-

Hausman’s test.  The test evaluates the consistency of a random-effects estimator when 

compared to a fixed-effects estimator, which is a less efficient estimator although already 

known to be consistent. Verbeek (2004) notes that 𝐼𝑇 − (1 / 𝑇)𝜄𝑇𝜄𝑇
′  transforms the data in 

deviations from individual means and −(1 / 𝑇)𝜄𝑇𝜄𝑇
′  takes the individual means, in turn, 

GLS estimator for β can be used. It follows that the fixed and random effects estimators are 

equivalent for large T as Ψ → 0 and 𝑇 → ∞. 

 

2.3.3 Data 

This study used the Integrated Household Panel Survey (IHPS) data that was collected by 

Malawi’s National Statistical Office. The panel comprises three waves (time periods). The 

first wave was a subset of the third integrated household survey (IHS3) that was conducted 

from March 2010 to March 2011 under the umbrella of the World Bank Living Standards 

https://en.wikipedia.org/wiki/Efficient_estimator


36 
 

Measurement Study.  The first wave had 204 enumeration areas (EAs) which were tracked 

back in 2013 as a second wave in accordance with the IHS3 fieldwork timeline and as part 

of the Integrated Household Panel Survey. In 2013, a total of 3,246 households in these 

EAs were visited for data collection. At baseline, the IHPS sample was selected to be 

represented at the national. Once a split-off individual was located, the new household that 

he/she formed/joined since 2010 was also brought into the IHPS sample. In view of the 

tracking rules, the final IHPS sample, therefore, included a total of 4,000 households that 

could be traced back to 3,104 baseline households. In parallel with the fourth integrated 

household survey (IHS4) operations, also implemented the Integrated Household Panel 

Survey 2016 as a third wave or followed up to the IHPS 2013. The IHPS 2016 subsample 

covered a national sample of 102 EAs (out of the 204 baselines IHS3 panel EAs) and was 

conducted during the first half of IHS4 fieldwork. 

 

The IHPS consisted of four questionnaire instruments; the household questionnaire, the 

agriculture questionnaire, the fishery questionnaire, and the community questionnaire. Of 

interest for this study was the agriculture and household questionnaires. The agriculture 

questionnaire allows, among other things, for extensive agricultural productivity analysis 

through the diligent estimation of land areas, both owned and cultivated, labour and non-

labour input use and expenditures, and production figures for main crops and livestock. The 

household questionnaire encompassed economic activities, demographics, welfare and 

other sectoral information of households. It covered a wide range of topics, dealing with 

the dynamics of poverty (consumption, cash and non-cash income, savings, assets, food 

security, health and education, vulnerability and social protection).   
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Figure 2.2: Distribution of the precipitation and temperature across (2015) 

 

Geospatial data on climate variables (rainfall and temperature) geographical variables 

(altitude) were also compiled for all waves of the panel. Figure 2.2 shows the distribution 

of rainfall (Panel a) and temperature (Panel b). Plot level data were generated from the 

agriculture survey data. There is more precipitation along with the central region lake show, 

Karonga district and around Mulanje mountain. In contrast, some areas of Rumphi districts 

and a stretching connecting Neno and Mwanza districts receive low rainfall. There is a low 

temperature in some areas of Mulanje mountain, some parts of Rumphi and forested stretch 

in the Mzimba district. High temperatures are in southern districts, including Nsanje, 

Chikwawa and Neno districts.  
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2.4. Results and Discussion 

2.4.1 Description of variables 

The descriptive statistics of the variables included for modelling are presented in Table 2.1. 

The Table comprises variables that are agro-climatic, socio-demographic and climate 

adaptation. The variables are presented for each wave of the three panels used in this study. 

The last column presents the summary statistics for the full sample. The mean age of the 

farming household head for the three panels was 46 years, lying within the economically 

active age group. The sample was dominated by male-headed farming households. The 

female-headed households constituted 23 percent of the whole sample. The education level 

of the farmers was defined as the years of schooling accomplished than the qualifications 

attached. The use of qualifications attained hides a lot of information as one may attend a 

particular level of education without attaining qualifications required while still having 

benefited from the useful knowledge from that level which can shape their thinking and 

decisions around their farming practices. The level of education varied across years but the 

mean years of education level attained were 6.6 years which translates into the level of 

senior primary level of education.  

 

 Temperature and precipitation are included as climate variables. These variables exhibit 

both spatial and temporal variation. The mean annual temperature was 21.4 degrees Celsius 

and the mean precipitation was 1075.2 mm. The temperature data available was for the 

annual and wettest quarter (December to February) of the production season. Whereas 

precipitation data available was for annual, wettest quarter and wettest month (January). 

The study has been tailored to these levels of data available for the three waves. The initial 
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design was to have different temperature and precipitation variables by seasons of the year. 

However, as the case with secondary data, the study is constrained to use climate variables 

presented in Table 2.1, for which data was available for all three panels. 

 

Table 2.1: Description of   variables used in   estimating the   Ricardian model 
Variable Description Year 2010 Year 2013 Year 2016 Full data 

  Mean SD Mean SD Mean SD Mean SD 

TempAnnual Annual Temperature, °C 21.5 1.7 21.4 1.7 21.4 1.7 21.42 1.71 

TempWettestQ 

Temperature of wettest 

quarter, °C 
23.1 1.7 23.1 1.7 23.0 1.7 23.07 1.72 

PrAnnual Annual precipitation, mm 1065.6 223.9 1071.3 231.4 1083.9 239.5 1075.15 233.13 

PrWettestQ 

Wettest quarter precipitation, 

mm 
675.1 81.6 679.4 82.6 683.0 82.8 679.86 82.46 

PrWetstM 

Wettest months precipitation, 

mm 
245.1 29.4 246.6 29.2 247.6 29.4 246.63 29.36 

gender 

Gender  (male   =  1,   female  

=  0) 
0.78 0.40 0.78 0.41 0.75 0.43 0.77 0.419 

Age Age in years 43.3 15.6 46.0 14.9 47.3 15.0 45.9 15.21 

Education Level  Education   (yrs) 6.8 3.8 6.6 3.8 6.5 3.7 6.62 3.759 

intercrop 

Intercropping  (Yes   =  1,   No  

=  0) 
0.4 0.5 0.6 0.5 0.6 0.5 0.53 0.499 

waterconser 

Water conservation (Yes   =  1,   

No  =  0) 
0.4 0.5 0.5 0.5 0.5 0.5 0.47 0.499 

irrigation 

Irrigation (Yes   =  1,   No  =  

0) 0.11 0.181 0.11 0.114 0.11 0.120 0.11 0.08 

Improvedvar 

Improved variety ((Yes   =  1,   

No  =  0) 
0.66 0.47 0.68 0.46 0.64 0.48 0.66 0.47 

dist_road 

Distance  to   nearest road 

(Km) 9.59 9.570 9.83 10.193 9.45 9.906 9.61 9.920 

dist_agmrkt Distance  to   market (KM)       24.98 14.044 

NR Net revenue (US$/ Ha) 247.9 105.9 281.0 74.7 250.16 76.6 259 57.3 

N Observations 2268  2790  3,531  8,589  
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Also considered in the analysis was a package of farmer adaptation strategies to climate 

change. These include intercropping, water conservation practices, irrigation and the use of 

improved crop varieties. Around 66 percent intercropped their fields to spread the risk of 

total crop failure, about 47 percent engaged of package of soil water conservation practices 

to detour the crop stress as a result of extreme weather conditions, 66 percent used improved 

crop varieties which are more tolerant to drought impacts, and 11 percent supplemented 

their rainfed agriculture with irrigated farming. 

 

2.4.2 Economic impacts of climate change on agriculture  

To calibrate the impacts on climate change on agriculture, several models are implemented. 

The first Ricardian model regresses climate variables and other farmer specific 

characteristics on Net Farmland revenue per hectare. This acts as a base model before 

adjusting for the technical efficiency of the farms. The model is re-run with the net farmland 

revenue per hectare corrected for individual technical inefficiencies of production for 

farmers facing the same climate in each given climate zone. The output loss per hectare due 

to farmer specific inefficiency is multiplied by derived output price (derived from the ratio 

of realized revenue to quantity sold). The imputed value of output loss per hectare is added 

to the net farm revenue per hectare, which becomes the dependent variable for the TE 

corrected Ricardian model. 

 

The output loss is determined by the level of inefficiency of each farm derived from the 

output-oriented production frontier. Frontier models were run for four crops; Maize, 

Tobacco, Groundnut and Pigeon peas. These were the crops mostly grown in all three 
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waves of the data and allowed for enough degrees of freedom during analysis. While other 

crops were not commonly grown, those commonly grown reflects farmers’ adjustment to 

engage in crop production that suits their current climates. As such, the exclusion of non-

common crops did not affect the representation of the data. Using spatial analysis, the 

enumeration areas were classified according to their similarities in climates based on 

climate variables (Figure 2.3).  

 
 

Figure 2.3: Distribution of climate variables 
 

These were disaggregated into Low temperature - Low rainfall (Panel A in Figure 2.3), 

high temperature – low rainfall (Panel B) and moderate temperature – high rainfall (Panel 

C). High rainfall was associated was moderate temperature. In turn, the stochastic 

production frontier models were run for the crops and for each of the climates.  
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Estimation of the production frontiers was done in steps in the search for the appropriate 

estimator and parsimonious model. In the first step, the Translog production frontier 

specification was used to discriminate against either fixed or random-effects approaches. 

For consistency of the estimated production function, monotonicity and homotheticity 

regularity constraints were imposed on the linear and interactive coefficients of the 

Translog production frontiers in the estimation procedure. In the ex-post estimation of the 

Translog production frontier after choosing between the fixed or random-effects model, 

two issues were evaluated. First, the Translog production function was tested against the 

restricted Cobb-Douglass counterpart to determine the one that adequately represented the 

data generation process. The results of testing fixed versus random effects and Translog 

versus Cobb-Douglass are presented in Table 2.2. Due to inadequate data for certain 

climatic zones and crops, two models were not implemented. First, the pigeon pea model 

for low temperature – low precipitation, and second, the groundnut model for high 

temperature -  high precipitation, as can be seen with gaps in Table 2.2.  

 

A total of 10 Translog production frontier models were estimated for the crops under 

various climates, first with fixed effects and then with random effects. The results for 

comparing the fixed and random effects coefficients using the Durbin-Wu-Hausman test 

for each of the models are presented in Table 2.2. The Hausman test results show no 

systematic differences (p > 0.05) in fixed and random models coefficients for maize 

models. As such, all maize models used the random effects approach.  All other models’ 

estimations rejected the random-effects models favouring fixed-effects models (p <0.05). 

Thus, all other models were implemented using the fixed effects approach. 
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Table 2.2: Test results of specification of various Technical Efficiency models  

 Maize Tobacco Groundnut Pigeon pea 

Low temperature low precipitation  

Durbin–Wu–Hausman 6.89 (0.649) 118  

(0.000) 

289.51 

(0.000) 

- 

LR test for CD vs Translog 101.44 

(0.000) 

1167.01 

(0.000) 

4.85  

(0.542) 

- 

High temperature low precipitation 

Durbin–Wu–Hausman 4.72 (0.858) 102.05 

(0.000) 

49.49 (0.000) 142.42 

(0.000) 

LR test for CD vs Translog 114.6 

(0.000) 

16.93 

(0.000) 

834.26 

(0.000) 

374 

(0.00) 

High temperature High precipitation 

Durbin–Wu–Hausman 5.60 (0.779) - 781.41 

(0.000) 

111.94  

(0.000) 

LR test for CD vs Translog 25.76 

(0.000) 

- 970.08 

(0.000) 

-22.89 

(0.000) 

Note: In parenthesis are the p-values 

 

 

In the second step, in trying to develop a parsimonious model, the generalized Likelihood 

Ratio test was used. A high p-value of the Likelihood ratio test indicates that the data is 

consistent with the claim that the extra variables together (not just individually) in the 

Translog specification do not substantially improve model fit. For each Translog model, a 

corresponding Cobb-Douglass model was estimated for comparison. The results for each 

model (in Table 2.2) show that the flexible Translog production function fit better than the 

Cobb-Douglass except for the groundnut model under a low temperature-low precipitation 
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climate. The ten final models chosen after the generalized Likelihood Ratio test were then 

used for estimating technical efficiency scores.  

 

The technical efficiency results of the four crops are presented in Table 2.3. The results are 

disaggregated by the panel, climate and crop. The notations for climate A, B and C are as 

presented previously in Figure 2.2. The scores can take on values between 0 and 1.  

 

Table 2.3: Mean Technical Efficiency Scores  

Panel  Climate 

Maize Tobacco Groundnut Pigeon 

pea 

Total 

2010 

A 0.63 0.62 0.53 - 0.61 

B 0.66 0.58 0.51 0.74 0.65 

C 0.65 - 0.52 0.73 0.67 

Total 0.65 0.61 0.52 0.73 0.64 

2013 

A 0.66 0.67 0.58 - 0.64 

B 0.70 0.70 0.56 0.67 0.67 

C 0.71 - 0.52 0.67 0.68 

Total 0.69 0.68 0.57 0.67 0.66 

2016 

A 0.67 0.66 0.53 - 0.65 

B 0.69 0.70 0.52 0.67 0.66 

C 0.68 - 0.52 0.67 0.67 

Total 0.68 0.66 0.53 0.67 0.66 

Total 

A 0.66 0.65 0.55 - 0.64 

B 0.68 0.64 0.53 0.68 0.66 

C 0.68 - 0.52 0.68 0.67 

Total 0.67 0.65 0.54 0.68 0.65 

 

The latter is the most efficient farmer operating on frontiers, and any scores less than one 

means that they are operating below the frontier. The results show that, on average, the 

farms facing similar climatic conditions are not technically efficient and could increase 

their output level and net farmland revenue under the same climatic conditions. The within 

climate variation in output was netted out when estimating the Ricardian Model in the 

preceding section. 
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The results of the Ricardian Models are presented in Table 2.4, the middle column for the 

base model and the last column for the TE corrected model. Both ex-ante and posterior 

checks were part of the model implementation procedure to validate its robustness. Each 

model was tested for appropriateness of either fixed effects or random effects using Durbin-

Wu-Hausman’s test. The base model had p > 0.05 for Hausman’s Chi-square statistic (2.13), 

and the TE corrected model reported an insignificant Chi-square statistic of 3.32 (p > 0.05). 

Thus, both models needed to use the random effects approach since, in this case, the 

random-effects model is more efficient than the fixed effects model, although both are 

consistent.  

 

There are three types of variables; linear and quadratic climatic terms, farmer 

characteristics and adaptation strategies. One additional variable that most similar studies 

(Molua, 2009; Jain, 2007; Nnadi, Liwenga, Lyimo, & Madukweb, 2019) omitted is the 

interaction (cross-product) of the temperature and precipitation. While the linear terms 

reflect the uni-directional relationship of the climate variable and the net farm revenue, the 

quadratic terms reflect the function form or the shape of the curve of net farm revenue with 

respect to changes in climate variables. The shape of the curve depends on the sign of the 

coefficient on the quadratic term. The negative sign implies that the curve is concave, while 

when the sign is positive, it implies a convex shape to climate variable.  The linear and 

quadratic terms of climate variables were highly significant, showing a non-linear  
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Table 2.4: Random-effects GLS Ricardian regression model 
Variable Base model TE corrected model 

 Parameter 

estimate 

t-value P-value Parameter 

estimate 

t-value P-value 

TempAnnual 293.4 5.31*** 0.000 212.78  4.08 *** 0.000 

TempWettestQ 401.1 4.65*** 0.000 273.05 2.53*** 0.011 

PrAnnual  2.944 2.92*** 0.000 0.50 4.88*** 0.000 

PrWettestQ 4.278 1.94* 0.052 5.78 2.65 *** 0.008 

PrWetstM 8.208 1.33 0.184 4.32 0.24*** 0.807 

Temp*Precip -0.009 -0.58 0.562 0.05 3.87*** 0.000 

sq_TempAnnual -7.437 -5.06*** 0.000 -6.62 -3.61 *** 0.000 

sq_TempWettestQ -9.091 -4.52*** 0.000 -6.14 -2.73*** 0.006 

sq_PrAnnual 0.00021 2.70*** 0.007 0.00288 2.28*** 0.023 

sq_PrWettestQ -0.001 -1.78 0.074 -0.00289 -2.98 0.003 

sq_PrWetstM -0.015 -0.88 0.381 -0.01 -3.21*** 0.000 

Sex 30.67 1.73* 0.084 21.77 1.09 0.276 

Age 2.380 2.00** 0.027 1.63 0.15 0.883 

Education 9.45 5.82** 0.000 72.46 3.91*** 0.000 

Intercrop 60.03 1.42 0.155 105.06 3.20*** 0.001 

Irrigation 128.59 3.92*** 0.000 163.00 4.06*** 0.000 

Improved variety 150.73  4.22*** 0.000 226.94 3.56*** 0.000 

Water Conservation 88.65 2.47** 0.015 132.82  2.07** 0.039 

Distance to road 0.09 0.29 0.772 -0.56  -2.01** 0.045 

Distance to market -1.08 -4.58 ** 0.000 -0.71 -3.48** 0.001 

Constant -59.403 -0.47 0.640 47.12 1.26 0.208 

Wald chi2 418.43  0.000 293.39  0.000 

Hausman Test  17.25  0.369 20.89  0.183 

Observations 5,442     5,442     

*Significant at p <0.1, ** significance at p < 0.05, ***significant at p <0.01 

 

relationship between climate variables and net farmland revenue. Overall, coefficients of 

the two models were jointly significant, as shown by individual Wald chi-square statistics 

(p <0.01). The estimation used robust standard errors to control for heteroskedasticity. The 
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variance of the coefficient estimates was stably denoting that there was no serious 

multicollinearity in the variables. 

 

To get a deeper meaning of the coefficients, a further analysis was done to derive the 

marginal effects at the mean of each climate variable on net farmland revenue by taking the 

derivative of the Ricardian Model with respect to the climate variable in question course 

holding all other variables constant.  The marginal effects at the mean of each climate 

variable are presented in Table 2.5.  

 

Table 2.5: Marginal impacts of climate on net farm revenue per ha (US$/Ha) 
Climate  Marginal net farm revenue per Ha (US$/Ha) 

 Base 

model 

TE corrected 

model 

Difference P-

value 

Annual Temperature -34.53 -15.35 19.17 (190.2) 0.000 

Temperature of wettest quarter -18.33 -10.05 8.28 (244.4) 0.000 

Annual precipitation 3.21 2.22 -0.99 (-250.0) 0.000 

Precipitation of the wettest quarter 3.17 1.85 -1.31 (-250.0) 0.000 

Precipitation of wettest month 0.92 0.66 -0.26 (-134.3) 0.000 

(.) In parenthesis are the t-values for the difference 

 

The marginal effects of the temperature variables show that there are unidirectional impacts 

on net farm revenue. The findings from the base model show that agriculture will lose out 

from the general annual increase in warming both for efficient and non-efficient farmers. 

The marginal impacts from increases in precipitation are positive, of course, with the 

inefficient farmers benefiting most from increases in annual precipitation and in the wettest 
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quarter of the year. In absolute terms, the greatest impacts (in this case, negative impacts) 

come from rising warming. This is line with (Molua, 2009). 

 

A further analysis was done to test the significance of the differences in impacts of climate 

variables on net farm revenue between the two models. The study established that the 

magnitude of impacts is significantly different (p <0.01) between the base model and 

corrected for technical efficiency. The base model registered different negative impacts for 

warming and different positive impacts for increases in precipitation, with varying degrees. 

This could ascertain the fact that the presence of technical inefficiency in farm-level climate 

impacts calibration could lead to biasing the impacts of climate variables.  

 

The climate impacts are moderated by adaptation strategies for those farmers that have 

preconditioned their agriculture through the adaptation of relevant strategies. Several 

adaptation choices were explored, including intercrops, improved drought-tolerant crop 

varieties, and irrigation and water conservation practices (i.e., conservation agriculture). 

Intercropping was positively related to net farm revenue. Certain cover crops included in 

the intercrop package may have helped reduce crop stress that might come from high 

temperatures and moisture loss. In other instances, it may help to spread the risk of total 

crop failure and, in turn, minimize losses in net farm revenue. Irrigation was an important 

adaptation strategy in the studied farming systems. The fields that were under irrigation 

realized more net farm revenue than those that did not, in two ways, first through multiple 

cultivation rounds in a year and reduced crop stress during the rainfed agriculture season. 

The use of improved varieties also increased the resilience of the agriculture system to 
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climate stresses. It had the potential to increase the yield marginally by US$208 per hectare 

for technically efficient farmers and US$143 for non-efficient farms, probably because of 

its high tolerance to drought stresses.  

 

2.4.3 Future Uniform Climate scenarios and agricultural impacts 

Using the coefficients of the Ricardian model, I can examine the impacts of the various 

climates on a country’s agriculture while holding all other factors constant. These 

coefficients are used to experiment with artificial uniform warming scenarios: an increase 

in temperature by 2.5°C and 5°C (Same artificial scenarios have been used by Molua (2009) 

in West Africa). I further simulate artificial uniform precipitation scenarios: a decrease in 

precipitation by 7% and by 14%. Table 6 provides a summary of the outcomes of these 

artificial uniform scenarios. 

 

Table 2. 6: Forecasted impacts on net farm revenue from uniform climate scenarios 

Climate Annual Warming Annual Precipitation 

  +2.5°C +5°C -7% -14% 

Base: ∆Net revenue (US$/ha) -71.71 -108.9 3.18 3.14 

(-27.6%) (-41.9%) (-1.3%) (-1.4%) 

Base: ∆Total net revenue 

(Million US$) 

 

-400.13 -607.61 17.71 17.5 

TE: ∆Net revenue (US$/ha) -48.4 -81.5 2.18 2.13 

(-12.0%) (-20.2%) (-0.57%) (-0.23%) 

 

TE: ∆Total net revenue 

(Million US$) 

-270.26 -454.85 12.13 11.8 

Overall, increases in warming and reduction in precipitation will incur heavy losses on the 

agricultural sector. The average losses or gains per hectare are multiplied by the total 

cultivable agriculture land in Malawi to develop country-wide impacts of a given change 
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in climate variable. The assumption is that a rational farmer will choose crops that 

maximize returns under given climate conditions. If the climate becomes unfavourable for 

one crop, the farmers will switch to new crop choices that suit their climate to maximize 

returns. The uniform scenario shows that an increase in warming by 2.5°C will result in a 

loss of US$48.4 per hectare and US$270 Million for the country as a whole. The damages 

are overstated to be US$400 Million when the farms are inefficient. A further increase in 

warming to 5°C will result in more than proportionate increases in losses for the agriculture 

sector. An examination of the decrease in precipitation by 7% and 14% both shows that the 

sector will benefit about US$12.3 Million and US$11.8 Million, respectively. Although 

these are positive gains, it can be noticed that gains are decreasing in the direction of 

precipitation change. 

 

2.4.4 Projected climate change and impacts on agriculture using Global Circulation 

Models 

Evidence from an ensemble of 15 Global Circulation Models (GCMs) of type CMIP3 that 

were run for Malawi provides an indication of more warming for future climates compared 

to the historical baseline climate period of 1995 to 2015. Considering that climate change 

is a long-term phenomenon, the periods of analysis to observe future climate shifts are 

sliced into four climatological windows from 2020 to 2099, with each slice having a size 

of 20 years, namely 2020-2039, 2040-2059, 2060-2079, and 2080-2099 (See Taylor et al. 

(2012)). Over this time period, two different emissions scenarios are examined, A2 and B1  

(IPCC, 2001). These are also widely used in literature.  
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Table 2.7: Projected warming for Malawi by Global Circulation Models (GCM)  

Name of the Model Scenario A2 Scenario B1 

 2020 – 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

Base climate (22.4)         

BCCR_BCM2_0 20.8 21.4 22.2 23.2 20.7 21.2 21.5 21.9 

CCCMA_CGCM3_1 21.8 22.6 23.5 24.5 21.4 21.8 22.4 22.6 

CNRM_CM3 21.0 22.0 23.1 24.3 20.9 21.3 21.7 21.9 

CSIRO_MK3_5 26.8 27.5 28.4 29.7 26.7 27.3 27.7 28.1 

GFDL_CM2_0 22.2 22.9 24.0 25.0 22.2 22.4 22.9 23.2 

GFDL_CM2_1 22.1 22.8 23.7 25 21.8 22.4 22.9 22.9 

INGV_ECHAM4 23.8 24.5 25.3 26.2 -    

INMCM3_0 21.1 21.3 22.7 23.6 21.0 21.2 21.8 22.1 

IPSL_CM4 24.4 25.1 26.1 27.4 24.5 24.9 25.3 25.6 

MIROC3_2_MEDRES 21.3 21.7 22.9 24.1 21.1 21.6 22.2 22.7 

MIUB_ECHO_G 22.6 23.3 24.2 25.3 22.4 23.1 23.3 23.9 

MPI_ECHAM5 24.3 24.9 26.4 27.8 24.0 24.9 25.7 25.9 

MRI_CGCM2_3_2A 22.0 22.6 23.5 24.1 21.8 22.3 22.6 22.9 

UKMO_HadCM3 23.8 24.9 25.9 27.3 23.6 24.3 25.0 25.6 

UKMO_HadGEM1 22.2 23.1 24.3 25.6     

Mean for all models 22.7 23.4 24.4 25.5 22.5 23.0 23.5 23.8 

 

Taking the average climate outcome for all the examined GCMs, evidence shows that there 

will be a gradual decline of net farm revenues in the future due to warming. The 

climatological window averages are fitted into the Ricardian framework, and this attests to 

the fact that there will be a warming impact on net farm revenues. The finding shows that 

the impacts will intensify over the period 2060 to 2099. The projected impacts vary 

depending on the model and scenario in question. For all models, emissions scenario B1 

has shown to have moderate warming impacts compared to scenario A2 (Table 2.7). With 
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regard to precipitation, although there are mixed projected trajectories, the mean of the 

GCMs shows that the gains outweigh the losses because of the increase in the mean annual 

precipitation by 2099. As was the case with temperature impacts, the impacts for Scenario 

B1 are relatively lower than A2 (Table 2.8).  

 

Table 2. 8: Projected impacts of warming on Malawi’s agriculture, in US$ Millions 

per year 
 Scenario A2 Scenario B1 

 

2020 – 

2039 

2040 - 

2059 

2060 - 

2079 

2080 – 

2099 

2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

BCCR_BCM2_0 -54.5 -98.8 -157.8 -231.7 -47.1 -84.0 -106.2 -135.7 

CCCMA_CGCM3_1 -128.3 -187.4 -253.8 -327.7 -98.8 -128.3 -172.6 -187.4 

CNRM_CM3 -69.2 -143.1 -224.3 -312.9 -61.8 -91.4 -120.9 -135.7 

CSIRO_MK3_5 -497.5 -549.2 -615.6 -711.6 -490.1 -534.4 -564.0 -593.5 

GFDL_CM2_0 -157.8 -209.5 -290.8 -364.6 -157.8 -172.6 -209.5 -231.7 

GFDL_CM2_1 -150.5 -202.1 -268.6 -364.6 -128.3 -172.6 -209.5 -209.5 

INGV_ECHAM4 -276.0 -327.7 -386.7 -453.2     

INMCM3_0 -76.6 -91.4 -194.8 -261.2 -69.2 -84.0 -128.3 -150.5 

IPSL_CM4 -320.3 -372.0 -445.8 -541.8 -327.7 -357.2 -386.7 -408.9 

MIROC3_2_MEDRES -91.4 -120.9 -209.5 -298.1 -76.6 -113.5 -157.8 -194.8 

MIUB_ECHO_G -187.4 -239.1 -305.5 -386.7 -172.6 -224.3 -239.1 -283.4 

MPI_ECHAM5 -312.9 -357.2 -468.0 -571.3 -290.8 -357.2 -416.3 -431.0 

MRI_CGCM2_3_2A -143.1 -187.4 -253.8 -298.1 -128.3 -165.2 -187.4 -209.5 

UKMO_HadCM3 -276.0 -357.2 -431.0 -534.4 -261.2 -312.9 -364.6 -408.9 

UKMO_HadGEM1 -157.8 -224.3 -312.9 -408.9     

Mean for all models -193.3 -244.5 -321.3 -404.5 -177.7 -215.2 -251.0 -275.4 

 

Different GCMs have shown divergent precipitation outcomes for the future. While others 

have projected a drier future, others have projected a wetter future compared to the baseline 

(historical) precipitation window of 1995 to 2015. Of the 15 GCMs examined, six have 

projected a relatively drier future. A further examination of the mean for the 15 GCMs 

shows that precipitation will increase in the future between 10% to 16% across different 

future time slices. Using monthly rainfall data over the period of analysis, rainfall trends 
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over the months of the year have shown slightly different distribution patterns for the A2 

Scenario and B1 Scenario (Figure 2.4). The B1 class projections have shown that there will 

be an earlier onset of rainfall around November with high mean precipitation in the off-

season compared to the baseline. This might result in reduced costs of irrigation and, in 

turn, increased net farm revenues for farmers engaging in irrigated farming. The A2 class 

projections have shown increased precipitation in the months of November, December, 

January and February. There may be an early decline of precipitation towards the end of 

the rain season, which may require the adoption of shorter duration crop varieties to tally 

with shorter rain season. 

 

Table 2.9: Projected annual precipitation change (%) by Global Circulation Models 

(GCMs)  

Name of the Model Scenario A2 Scenario B1 

 2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

Base climate (1029.1*)         

BCCR_BCM2_0 36.5 37.9 37.9 50.4 38.5 35.8 37.3 37.1 

CCCMA_CGCM3_1 -8.9 -2.1 0.8 4.6 -0.5 5.0 -2.8 0.8 

CNRM_CM3 49.5 46.8 51.5 51.7 35.3 54.4 45.2 48.6 

CSIRO_MK3_5 11.0 12.8 22.7 13.6 14.7 10.4 13.6 10.9 

GFDL_CM2_0 23.5 35.6 36.8 26.1 31.9 29.5 38.7 35.2 

GFDL_CM2_1 25.9 17.4 23.3 25.3 20.6 22.5 14.5 17.8 

INGV_ECHAM4 25.4 29.9 33.4 32.8     

INMCM3_0 -17.5 -12.8 -11.8 0.0 -20.2 -16.5 -16.1 -14.0 

IPSL_CM4 -20.2 -13.4 -18.0 -10.4 -19.8 -23.4 -21.6 -14.8 

MIROC3_2_MEDRES 13.7 14.1 18.2 18.9 7.8 11.3 11.3 10.3 

MIUB_ECHO_G 14.7 17.0 24.1 33.9 15.4 17.8 21.2 21.0 

MPI_ECHAM5 -26.4 -24.3 -26.8 -21.4 -26.1 -30.2 -31.2 -25.4 

MRI_CGCM2_3_2A 30.8 33.1 24.7 27.3 25.6 28.5 32.0 27.6 

UKMO_HadCM3 -12.1 -18.8 -14.5 -7.3 -13.9 -16.8 -20.3 -13.1 

UKMO_HadGEM1 9.8 4.8 -4.4 -2.8     

Mean for all models 10.4 11.9 13.2 16.2 8.4 9.9 9.4 10.9 
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*Baseline value in mm not % 

   

Figure 2. 4: Projected change in the distribution of rainfall over a year 
 

Feeding various precipitation scenarios from GCMs into the Ricardian model yield the 

gains and losses presented in Table 2.10. The uncertainty of the future makes it a challenge 

to predict exactly what the climate will be like. However, from an ensemble of various state 

of the art GCMs we can get the mean projected precipitation to give a picture of what future 

climate will be like at the same time appreciate the sensitivity of climate impacts calibrated 

across various models. Overall, the mean of the GCMs shows that the gains outweigh the 

losses because of the increase in the mean annual precipitation by 2099. This corroborates 

with the finding of Andt et al. (2010) and  Saka et al.  (2012), who notes that future climate 

change will favour the agriculture sector. The CNRM_CM3 model projected the highest 

gains from change in precipitation, while we observed the worst damages projected from 

the MPI_ECHAM5 model. Using the mean of GCMs, by 2099, the agriculture sector will 

benefit US$3.8 Million per year from a change in precipitation. As was the case with 

temperature impacts, the impacts for Scenario B1 are relatively lower than A2.  
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Table 2. 10: Projected impacts of precipitation change (US$ in Millions/year) for 

Malawi 
Name of the Model Scenario A2 Scenario B1 

 2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

2020 - 

2039 

2040 - 

2059 

2060 - 

2079 

2080 - 

2099 

*Base climate (1029.1)         

BCCR_BCM2_0 8.49 8.83 8.82 11.74 8.98 8.34 8.70 8.65 

CCCMA_CGCM3_1 -2.08 -0.48 0.19 1.07 -0.12 1.16 -0.66 0.18 

CNRM_CM3 11.54 10.89 12.00 12.04 8.21 12.67 10.53 11.32 

CSIRO_MK3_5 2.56 2.99 5.28 3.16 3.41 2.43 3.18 2.54 

GFDL_CM2_0 5.47 8.28 8.56 6.09 7.43 6.87 9.02 8.21 

GFDL_CM2_1 6.04 4.04 5.42 5.89 4.81 5.25 3.37 4.14 

INGV_ECHAM4 5.92 6.97 7.78 7.63     

INMCM3_0 -4.08 -2.98 -2.75 0.00 -4.70 -3.84 -3.75 -3.25 

IPSL_CM4 -4.70 -3.13 -4.20 -2.43 -4.62 -5.46 -5.03 -3.45 

MIROC3_2_MEDRES 3.18 3.27 4.23 4.41 1.82 2.63 2.63 2.41 

MIUB_ECHO_G 3.42 3.95 5.62 7.90 3.60 4.14 4.93 4.88 

MPI_ECHAM5 -6.14 -5.65 -6.24 -4.99 -6.07 -7.04 -7.27 -5.92 

MRI_CGCM2_3_2A 7.17 7.71 5.76 6.37 5.97 6.64 7.45 6.42 

UKMO_HadCM3 -2.83 -4.37 -3.38 -1.71 -3.23 -3.91 -4.73 -3.04 

UKMO_HadGEM1 2.27 1.11 -1.02 -0.65     

Mean for all models 2.42 2.76 3.07 3.77 1.96 2.30 2.18 2.54 

*Baseline value in mm not % 

 

5. CONCLUSIONS AND POLICY IMPLICATIONS 

The study assessed the current and potential impacts of climate change on agriculture in 

Malawi. Climate change will have diverse impacts on agriculture, meriting the need to 

understand the interaction between global climate shifts and the agricultural system. The 

results have shown that increases in rainfall will generate economic gains for the agriculture 

sector and may reduce the probability of farmers living below the poverty line. Warming 

will have detrimental impacts on the sector. A comparison of efficient and non-efficient 
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farmers in their production shows that impacts could be exaggerated for the inefficient 

farmers. For the inefficient farms, the economic impacts could be idiosyncratic, comprising 

of true climate-related impacts and technical inefficiency impacts. 

 

The future economic impacts of climate change will largely depend on the nature of the 

future climates. While many studies have viewed climate change to be detrimental to 

agricultural enterprise outcomes, our study finds that the agriculture sector will benefit from 

a wetter future, although there will be some losses from increased future warming. There 

is a general consensus across GCMs that the projected future climate for Malawi will be 

more warming than the baseline. The resulting economic, agricultural damages will be 

moderate in the short future but will be expected to increase in the medium (2060) to long 

term future (2080). The negative economic impacts from increased warming could be offset 

by shifting crop variety choices to adopting drought-tolerant varieties and reinforcing 

affordable irrigation systems and farm water conservation practices. These will generate 

positive marginal changes in economic gains of US$226 for drought-tolerant varieties and 

US$163 for irrigated farms per hectare per year compared to those who will not adopt.  

 

There are uncertainties in the 15 GCMs about the direction of future precipitation for 

Malawi. However, the general consensus (mean) across the GCMs for A2 and B1 emission 

scenarios shows that there will be more precipitation relative to the baseline precipitation. 

As a result, Malawi will have positive economic gains, for the agriculture sector, from this 

future climate shift. However, the gains from precipitation changes are not enough to offset 

the impacts of warming unless the farmers employ systematic adaption strategies to 
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moderate the negative impacts of future warming, Since the negative shifts in climate 

cannot be reversed easily if, at all they can, the plausible actions could be to mitigate the 

impacts through relevant adaptation strategies.  
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CHAPTER 3 

CLIMATE-INDUCED VULNERABILITY TO POVERTY 

 

3.1 Introduction 

3.1.1 Background 

The staggering effects of climate change on agrarian economies have deepened than ever. 

These effects continue to threaten economies that heavily depend on agriculture and forest 

sectors for rural livelihoods  (Rosenzweig & Parry, 1993; Gbetibouo & Hassan, 2005; 

Kurukulasuriya, et al., 2006).  The magnitude of the effects is skewed towards the rural 

population because a majority of the population resides in the rural and is mostly employed 

in subsistence rain-fed agriculture as their prime economic activity, and more than half of 

their earnings are spent on food (Cranfield, Eales, Hertel, & Preckel, 2003). Increased 

intensity of climate extremes such as droughts and floods will result in low agricultural 

productivity, negatively and directly impact their livelihoods (Easterling, et al., 2007). This 

will, in turn, weaken the efficacy of certain adaptation strategies, like irrigation, as low 

levels of precipitation will reduce the amount of water available for irrigated food 

production (FAO, 2003) in the off-rainfall season. 

 

The developing regions like Sub-Saharan Africa (SSA) has been dominated by countries 

whose economies heavily rely on agriculture for employment and food security 

(Livingston, Schonberger, & Delaney, 2011). Although the agriculture sector has large 
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numbers of small-scale farmers, they mostly produce under unfavourable climatic (low 

precipitation and high temperatures) and environmental (low soil fertility) conditions 

(Mutsvangwa, 2011). With regard to climate conditions, the need arises to understand the 

nature and extent of vulnerability and, in turn, resilience to the impacts on farming 

households in general to aid documentation and packaging of practical and workable 

strategies for enhancing communities’ capacity to reduce vulnerability and to mitigate 

negative climate change impacts. In Malawi, the resilience of agriculture will depend on 

the capacity of producers to adapt their agriculture systems to changing environmental and 

economic conditions. This will be of particular importance as climate change alters the 

nature and magnitude of these environmental shocks. Those who may not adapt will incur 

economic losses over time, which will ultimately threaten the economic viability of their 

agriculture ventures.  

 

Studies relating to climate change and agriculture in Malawi have taken divergent 

trajectories. Others have analysed factors affecting choices of climate adaptation strategies 

in agriculture (Pangapanga, Jumbe, Kanyanda, & Thangalimodzi, 2012) but did not 

quantify the vulnerability of farming households to climate stresses. Nordhagen and 

Pascual (2013) examined the impacts of shocks on the behaviour of farmers in seed 

markets. In order to understand the economic viability of the agricultural systems in Malawi 

under increasing climate variability, as proposed in climate change forecasts, it makes 

vulnerability studies much relevant as it is a precursor to bolster the agriculture sector’s 

resilience. It is believed that climate variability will relay greater vulnerability on most of 

the farmers in developing countries, not because the level of climate variability is high, but 
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because of over-dependence on rain-fed agriculture. Any minor variability will transmit 

great losses in agricultural output (Watson, Zinyowera, Moss, & Dokken, 1998), given that 

Malawi lies in the tropical region where temperatures are already high.  

 

The term vulnerability refers to shocks and stresses of climate change and variability to 

which farming households are exposed and their adaptive capacity to withstand the 

resulting negative effects (IPCC, 2001; IPCC, 2007). IPCC (2007) define adaptive capacity 

as the ability of a system to adjust to a changed state of climate and moderate damages or 

cope with the associated consequences. The level of vulnerability of the households to 

climate-related hazards depends on first the magnitude of climate stresses and, second, on 

the resilience of those households to withstand climate-related shocks (NEST, 2004). 

 

Empirical studies have revealed that climate change has an impact on agricultural land 

returns and that the agriculture sector is vulnerable to climate change both in terms of 

economic returns and total physical product (Gbetibouo & Hassan, 2005). Theories suggest 

that tropical regions in developing economies have indicated vulnerability when it comes 

to climate fluctuations (Hertel & Rosch, 2010). In the agriculture landscape, yields could 

be reduced considerably due to the climate-related stresses, having drastic consequences 

upon farmers’ production and welfare, which is why individual farming units from the 

environmental-economical limelight needs to be analyzed in order to explore the possibility 

of strengthening resilience to climate change stresses. 
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3.1.2 Problem Statement  

Despite this importance, studies on the vulnerability of farming households to climate 

change are limited in the tropics. For Africa in general, a few studies have assessed the 

vulnerability of households to climate shocks (Mansour and Hachicha 2014, Dercon 2004, 

Dercon 2005, Hoddinott and Quisumbing 2003). While these studies are informative, their 

coverage is limited to a few countries. This presents an important limitation as their findings 

cannot be generalized to farming communities in the tropics or southern Africa. Countries 

with different levels of per capita income are expected to have different levels of 

vulnerability to poverty. In addition, the magnitude of the effects on different variables 

cannot be the same. Some variables could matter in one country and not in another country. 

Therefore, climate change requires an analysis to a level that would enhance policymakers 

at the country level to formulate policy options that would yield the intended results with a 

high level of precision (Klein, 2004).  

 

An analysis of vulnerability is important because an efficient social policy needs to focus 

beyond poverty alleviation now and examine poverty prevention in the future. A poverty 

alleviation plan that ignores the transient nature of poverty ignores households that have a 

high likelihood of staying in a poverty trap and may instead devote scarce resources to 

households that are only poor in the short run and would exit the poverty trap without 

government assistance (Ellis & Freeman, 2005). Several researchers have done work 

around this area of poverty entry and exit before (Glewwe, Gragnolatti, & Zaman, 1999; 

McCulloch & Baulch, 2000; Neilson, Contreras, Cooper, & Hermann, 2008). One limiting 

factor about these studies is that they used multinomial logit models and failed to account 
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for state dependency of poverty models resulting in cross equation correlation of the error 

terms. This study, therefore, seeks to contribute to earlier studies and fill the limitation of 

earlier studies in this area by using a Multivariate Probit that accounts for state dependency 

of poverty.  

 

By understanding, preparing for, and adapting to climate-related stresses, farming families 

can leverage opportunities and reduce risks (Trinh, Rañola, Camacho, & Simelton, 2018). 

This is particularly necessary for Malawi, in which 80 percent of the population reside in 

the rural agrarian communities (NSO, 2008). More importantly, there lacks an analysis at 

the national scale regarding a climate-related vulnerability that could provide the 

longitudinal picture that is needed to understand how climate change is impacting the 

vulnerability of farming households to poverty in the country (Olayide & Alabi, 2018). It 

is against this background that this chapter sets forth to quantify the magnitudes and 

patterns of rural climate-induced vulnerability to poverty in Malawi. 

 

3.1.3 Objective of the Study 

The overall objective of this chapter is to examine farmers’ vulnerability to poverty under 

climate-induced stresses in Malawi. Specifically, the study seeks to: 

 Quantify the magnitude of climate stress-induced vulnerability to poverty among 

farming households. 

 To quantify the effects of ex-ante climate stress-induced vulnerability on ex-post 

poverty. 

 To quantify the relative effects of climate-related stresses on poverty transition. 
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3.2 Literature Review 

3.2.1 Defining Vulnerability 

In the current study’s context, vulnerability refers to the manner and extent to which a 

farming system is prone to conditions that negatively affect the welfare of the system itself. 

In the climate change field, the IPCC defined vulnerability as “the degree to which a system 

is susceptible to, or unable to cope with, adverse effects of climate change, including 

climate variability and extremes” (McCarthy, Canziani and Leary, et al. 2001). In contrast, 

the poverty and development knowledge archives has defined vulnerability as total measure 

of human welfare that integrates environmental, social, economic, and political exposure 

to a range of harmful perturbations (Bohle, Downing, & Watts, 1994). According to Yamin 

et al. (2005), the disaster community defined vulnerability as conditions that are triggered 

by physical, social, economic, and environmental factors or processes that increase the risk 

of a community to the impact of harmful perturbations. In the field of resilience, 

vulnerability is defined as a lack of ability to recover quickly after a shock (Hill & Wial, 

2008).   

 

In the literature on rural livelihoods, it is widely accepted that seasonal climate variations 

(including periodicity and precipitation) are one of the key drivers of vulnerability faced 

by farming families (Ellis & Freeman, 2005). Economic assets, capital resources, financial 

means, wealth, the economic condition of nations and technological advancement of groups 

clearly is a determinant of reducing vulnerability to climate stress (Kates 2000).  
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3.2.2 Measurement of Vulnerability 

Different disciplines conceptualize vulnerability differently based on the objectives and 

methodologies employed. Adger (1999), Füssel and Klein (2006), and Füssel (2007) have 

provided a good framework for measuring the vulnerability of households. In a broader 

view, the literature has categorized vulnerability into three; socio-economic, biophysical 

and integrated assessment approaches.  

 

3.2.2.1 Socioeconomic vulnerability assessment 

Socioeconomic vulnerability focuses on the capacity of the system to withstand hazardous 

exposure given the social, economic and political characteristics of the individuals or social 

groups (Tompkins & Hurlston, 2006; Turner, et al., 2003; Burton & Cohen, 1993). The 

social capacity of the system is largely determined by income distribution, gender, 

ethnicity, social capital, local institutions, among others—the differences in these variables 

for a given population result in different outcomes of vulnerability. Thus, even before a 

shock or natural hazard occurs, vulnerability can be regarded as an internal state of the 

system (Allen, 2003). The impacts of such or natural hazardous are mediated by the internal 

characteristics of the system, including socio-economics, institutional and demographic 

factors. Thus, the impacts of shocks are better understood through the lens of social 

vulnerability. Within the study of social vulnerability, there are two variants: individual 

vulnerability and collective vulnerability. The former is largely determined by the social 

status of individuals or households and the latter by the institutional, infrastructural 

variables, although the two are intertwined (Adger, 1999). 
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The key weakness of this approach is that it focuses only on the variation in socioeconomic 

variables among individuals or community groups as the source of the differences in levels 

of vulnerability. While in an actual sense, the differences in the environment in which the 

households are living could bring divergent outcomes of the vulnerability levels. Apart 

from socioeconomic factors, some environments are more exposed or prone to natural 

shocks than others. Similarly, different environments are endowed with resources 

differently such that when a shock strikes, households from different environments would 

naturally be presented with different coping mechanisms.  

 

3.2.2.2 Biophysical vulnerability assessment 

The biophysical approach focuses on how environmental change transmits damages on 

biological and social systems. This approach has been identified differently by different 

disciplines. In the medical field, they have called it a dose-response relationship; in 

environmental economics, they have called it a damage function; in geography, it is called 

a hazard-loss relationship (Füssel, 2007). 

 

The literature is not short of this approach. For example, economic impacts of climate 

change have been assessed using relationships between climate variables and crop income 

(Füssel, 2007; Mendelsohn, Nordhaus, & Shaw, 1994; Polsky & Esterling, 2001). Others 

have studied the relationship between biophysical (crop yield, land use and environment) 

and climate variables (Reeves, Bagneb, & Tanakac, 2017). In the same stream of literature, 

we have impacts of climate changes on water and food supplies (Gohar & Cashman, 2016),   

and ecosystem disturbance (Dwire, Mellmann-Brown, & Gurrieri, 2018). The parameters 
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of the biophysical prediction models are used to forecast or predict future impacts by 

simulating future climate variables (Kurukulasuriya & Mendelsohn, 2008).  

 

The biophysical approaches have one key limitation. They have tended to focus much on 

the physical damages as a result of environmental stress. For example, the approach can be 

used to calibrate the impacts of climate change on crop yields. Although the level of 

damages for different social groups might be the same, the corresponding impacts on their 

welfare depend on their internal socioeconomic characteristics, which moderate their 

adaptive capacities. Poor farmers would suffer greatly from the impact of droughts due to 

their weak adaptive capacity, while better-off farmers would easily smoothen their 

consumption - permanent income hypothesis.  

 

3.2.2.3 Integrated vulnerability assessment approaches 

This approach builds on the fact that the earlier two approaches were reciprocal in terms of 

their strength and weakness. Thus, this approach is a hybrid of the socio-economic and 

biophysical approaches. Many researchers have been applying this approach to different 

research problems. In the recent past, Wei, et al. (2017) used the approach to identify the 

vulnerabilities of the animal husbandry to snow disasters at a spatial scale in order to refine 

disaster mitigation and adaptation strategies. Karagiorgosa et al. (2016) applied it to study 

vulnerability to flash floods in Greece. 

 

Although the integrated vulnerability assessment is relatively a new concept, Fussel (2007) 

argued that the IPPC (2001) definition of vulnerability reflected the multidimensional 
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nature of the approach. The key elements of the definition included exposure, sensitivity, 

adaptive capacity. In Fussel (2007) framework, the sensitivity in the definition corresponds 

to the biophysical approach. In contrast, the adaptive capacity corresponds to the 

socioeconomic approach. Hence the blend of the two approaches might bring outcomes that 

are in line or very close to the definition of vulnerability by IPPC (2001). 

 

Although the integrated assessment approach is more robust than each of the discussed 

approaches, it comes with some limitations. The literature lacks a standardized way of 

combining the socioeconomic and biophysical indicators when implementing the 

integrated assessment. Furthermore, it is not clear what relative weights should be put on 

socioeconomic and biophysical vulnerability or on each of the variables in the model. 

Second, the approach does not account for the dynamic nature of adaptation and coping 

mechanisms as new opportunities arise in the presence of environmental shocks.   

 

3.2.3 Econometrics based methods to vulnerability assessment 

Within the above-discussed approaches to vulnerability assessment, there are 

econometrics-based methods and indicator methods. What is common to these methods is 

the treatment of poverty. In measuring vulnerability, several researchers have suggested the 

use of poverty as a proxy for household welfare and measure the magnitude to which 

households are not able to cope with negative effects of climate-related stress, which is 

usually reflected as a change in the level of poverty or poverty depth (Calvo & Dercon, 

2005; Kamanou & Morduch, 2005; Ligon & Schechter, 2003). This is concerned with 

assessing the role of risk in the economics of poverty (Alwang, Siegel, & Jorgensen, 2001). 
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Thus, this section explores the body of literature on econometric methodologies used in 

assessing vulnerability which is of interest for this study. Econometric approaches for 

measuring vulnerability uses household data to assess the level of vulnerability for 

disaggregates of social groupings. Hoddinot and Quisumbing, (2003) put three different 

methodologies used to assess vulnerability. These include vulnerability as uninsured 

exposure to risk (VER), vulnerability as the low expected utility (VEU) and vulnerability 

as expected poverty (VEP). All three methods construct a measure of welfare loss attributed 

to shocks.    

 

3.2.2.1 Vulnerability as low expected utility 

Ligon and Schechter (2003) define vulnerability as the deviation of the expected utility 

from the utility of consumption level that is at vulnerability cut-off point and above. Putting 

it differently, it is the difference between the expected consumption and the certainty 

equivalence of consumption. This can mathematically be defined as:  

𝑉𝑖 = 𝑈𝑖(𝑧) − 𝐸[𝑈𝑖(𝑐𝑖)] 

Where z is the certainty equivalence consumption or the poverty cut-off point, if the 

household’s consumption equates or exceeds z, then it is considered as non-vulnerable. 

Taking an expectation of a well-behaved consumption expenditure function will cause the 

vulnerability not to depend on mean consumption only but also on the variation of 

consumption. With this, vulnerability can be decomposed to comprise of poverty and risk.  

𝑉𝑖 = 𝑈𝑖(𝑧) − 𝑈𝑖(𝐸[𝑐𝑖])]  Poverty 

+{𝑈𝑖(𝐸[𝑐𝑖]) − 𝐸[𝑈𝑖(𝐸[𝑐𝑖|𝐱̅])]} Aggregate risk 
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+{𝐸[𝑈𝑖(𝐸[𝑐𝑖|𝐱̅])] − 𝐸[𝑈𝑖(𝑐𝑖)]} Idiosyncratic risk 

The function U(.) follows a constant rate of risk aversion (CRRA) function form 𝑈(𝑐) =

(𝑐1−𝛾)/(1 − 𝛾) during estimation, where 𝛾 ∈ ℝ++. Using panel data, the expectation of 

consumption is parameterized as 𝐸(𝑐𝑡
𝑖|𝐱̅𝒕, 𝐱𝒕

𝒊) = 𝛼𝑖 + 𝜂𝑡 + 𝐱𝒕
𝒊′𝜷, with 𝜃 = (𝛼𝑖, 𝜂𝑡 , 𝜷

′) a 

vector of parameters to be estimated. Ligon and Schechter (2003) applied this method to a 

panel dataset obtained from Bulgaria in 1994 and found that poverty and risk played 

roughly equal roles in reducing welfare. However, the key flaw of this method is the failure 

to factor in an individual’s risk behaviour about uncertain outcomes since individuals have 

asymmetric information about their preferences for such outcomes (Kanbur, 1987).  

 

3.2.2.2 Vulnerability as uninsured exposure to risk 

This method is applied after the shock has happened to determine the magnitude of welfare 

losses (not probabilities) or reduction in the level of consumption as a result of the effect 

of shock on the individuals (Hoddinott and Quisumbing 2003). The impact of a shock is 

analyzed using a panel dataset to compare consumption levels ex-ante and ex-post shock. 

The welfare losses are analysed relative to observed shocks. Skoufias (2003) analyzed the 

effects of shocks in Russia using the same methods. The assumption is that when there is 

no risk management strategy, shocks result in welfare losses on individuals, which is 

observable through their reduction in consumption bundles. The value of welfare loss is 

equivalent to the insurance value that an individual would be willing to pay prior to the 

occurrence of the shock in question. The major drawback of this approach is the difficulty 

to find a panel for which to compare consumption levels. There have been debates that 

cross-sectional data induces some biases in the estimates (Skoufias, 2003).  
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3.2.2.3 Vulnerability as expected poverty 

The expected poverty group of measures identifies vulnerable households as those trapped 

below an agreed-upon poverty line with particular probability (Alwang, Siegel, & 

Jorgensen, 2001). This approach views vulnerability as the expected poverty while income 

expenditure is used as a surrogate for well-being. Hence it models the probability of a given 

household falling below the cut-off or minimum expenditure (poverty line) if the household 

was above the poverty line. In the case that the household was already trapped in poverty 

before the shock, the model estimates the probability of that household’s failure to exit the 

poverty trap  (Chaudhuri, Jalan, & Suryahadi, 2002).   

 

A recent application of this method comes from Deressa et al. (2009) in a study in which 

they estimate the likelihood of the income of households falling below a poverty line and 

characterizes vulnerable households as those with more than 0.5 probability of falling 

below or staying in the poverty trap. The authors were able to characterize the share of 

vulnerable households in different regions and differentiate between poor, vulnerable 

households and non-poor vulnerable households. One important observation was that the 

probability of being poor was quite sensitive to the poverty line used.  

 

3.3 Methodology 

3.3.1 Theoretical Framework 

The theoretical framework of vulnerability can be understood by assuming that there is a 

representative farm household. This household is affected by different factors, some of 
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which are exogenous, like the environment in which the household is placed. The other 

factors are idiosyncratic to the household, such as socioeconomic characteristics and 

resource endowments. Using a certain and right mix of its resource endowments towards 

different economic activities given the environmental setting they are in the household can 

produce goods and services which in turn earns it income. The outcome, which is income, 

is the key determinant of vulnerability. 

 

The asset endowment that a household has can be summarized as capital and labour. Capital 

includes natural capital (land), physical capital (livestock, agricultural implements), social 

capital (affiliation to community groupings like village savings and loans association 

(VSLAs)1 and farmer groups), financial capital (their deposits at VSLAs, cash at hand), 

human capital (agricultural knowledge, skills and health). On the other hand, labour 

endowment is the potential labour that a household can supply to own production or sell to 

enterprises external to the household. Given its asset endowment, the representative farm 

household will seek to maximize a joint utility function of consumption (𝑐𝑖) and leisure (𝑙𝑖) 

as:  

max𝑈(𝑐𝑖, 𝑙𝑖)         (1) 

subject to budget, commodity balance, resource and non-negativity constraints 

𝑝𝑐 ∑𝑐𝑖 + 𝑤𝐿ℎ + 𝑟𝐴ℎ  ≤ 𝑝𝑦 ∑ 𝐹(𝐴, 𝐿, 𝑆)𝑘
𝑖 + 𝑤𝐿𝑚 + 𝑟𝐴𝑚   (2) 

𝐿 = ∑𝐿𝑖
𝑓

+ 𝐿ℎ         (3) 

                                                           
1 These are community savings and lending groups where members save their earnings or borrow at an 
affordable interest rate. 
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𝐴 = 𝐴𝑓 + 𝐴ℎ         (4) 

𝐸𝐴 = 𝐴𝑓 + 𝐴𝑚,  𝐸𝐿 = 𝐿
𝑓

+ 𝐿𝑚 + 𝑙      (5)2 

𝑐𝑖, 𝑙𝑖, 𝐿𝑖
𝑚, 𝐴𝑓, 𝐴𝑚 ∈ ℝ+       (6) 

The farmer maximizes utility by choosing the level of consumption  (𝑐𝑖), leisure (𝑙𝑖) given 

the household’s endowment of hired labour (𝐿ℎ), hired land (𝐴ℎ), household labour 

supplied to market (𝐿𝑚), land supplied to the market (𝐴𝑚), household labour for own 

production (𝐿𝑖
𝑓
) and household land for own production (𝐴𝑓). The farm household produces 

agricultural goods according to a well-behaved production function, F(A, L, S) for 

agricultural and non-agricultural activities, where A is farmland area, L is labour. The 

production function, F(.) is the monotonic non-increasing function in climate shocks, S. 

Equation (2) is a full income constraint which implies that the sum of consumptions, wages 

for hired labour and rental payment for hired land cannot exceed the sum of the value of 

output, wage earnings from labour supply and earnings from land rented out. Equations (3) 

to (5) are the farmer’s resource constraints that define the farmer’s risk management plan, 

and equation (6) is a collection of non-negativity constraints on consumption, leisure and 

farm inputs. The allocation of resources to different production activities depends on the 

farmer’s perceived variability of returns for each activity. Thus, a farmer will engage in 

activities that are perceived to have less variability to climate shocks, or they will engage 

in the production of several activities that embody different levels of susceptibility to 

climatic shocks, which have an impact on their returns. 

 

                                                           
2 Total land endowment (𝐸𝐴) is the sum of own farmland for own production (𝐴𝑓) and farmland rented 

out (𝐴𝑚). Total labour endowment (𝐸𝐿 ) is the sum of own labour supply (𝐿
𝑓

), labour supplied to the 

market (𝐿𝑚 ), and leisure (𝑙 ). 
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The relationship between resource endowment, enterprise choice and returns are affected 

by the likelihood of shocks occurring (Heitzmann, Canagarajah, & Siegel, 2002). The 

shocks may impact the resource endowment or returns to investment. For example, 

prolonged droughts and floods may destroy physical capital. After a shock, households 

engage in ex-post disaster management. These include selling their labour force, borrowing 

from credit markets, drawing on savings resources (i.e. livestock and financial savings, or 

other household assets), self-select into social support programs like public works, cash 

transfer in order to smoothen their consumption.  

 

However, the success of ex-post disaster management largely depends on the nature and 

magnitudes of the disasters, availability of savings, the functioning of the credit markets, 

the presence of government social support programs. If these ex-post shock management 

mechanisms are weak or non-existence, there is a high likelihood of a household having 

their consumption below their expected levels.  

 

3.3.2 Empirical framework for Modeling household vulnerability to climate change 

This study will adopt the vulnerability to expected poverty (VEP) approach to analyze the 

vulnerability of households to climate change impacts. Climate change impacts through 

climate extreme events enter household welfare function through the production function 

as specified in the theoretical framework above.  Although most of the empirical studies of 

vulnerability analysis have used cross-section data (Chaudhuri, Empirical Methods for 

Assessing Household Vulnerability to Poverty, 2000; Chaudhuri, Jalan, & Suryahadi, 2002; 

Chaudhuri, 2003; Suryahadi & Sumarto, 2003; Appiah-Kubi & Oduro Abena, 2008; Azam 

& Imai, 2009), they have one common limitation. These studies make a sweeping 
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assumption that spatial variation in consumption (variation across household) proxies inter-

temporal variation in consumption. Tesliuc and Lindert (2002), with experiences from 

Guatemala, note errors that go with cross-sectional studies. Disasters are very prevalent in 

Guatemala. In their study, they found out that at the time of data collection, some 

households were still recovering from the impacts of disasters that had happened several 

years back. Thus, the use of cross-section data from a year that had no disasters might result 

in understating the level of consumption vulnerability.  

 

The literature has a growing number of articles that have estimated vulnerability to poverty 

using panel data which is more robust compared to vulnerability measures using cross-

sectional data. Following Chaudhuri (2000), the probability of a given household being 

consumption poor at time t+j is given as; 

𝑉ℎ𝑡 = Pr (ln 𝐶ℎ,𝑡+𝑗 < ln 𝑍) = ∫ 𝑓(𝐶ℎ𝑡+𝑗)𝑑𝑐
𝑧

𝑐
    (7) 

Where, Vht represents the vulnerability of farm household h at time t, Ch,t+j  is the 

consumption of household h at time t+j, and z is the poverty cut off point of household 

consumption. The vulnerability of a farmer to climate shock is proportional to the length 

of time period j. Given j time periods, the vulnerability of a household in j periods (Risk or 

R(.)) is the probability of observing at least one spell of climate-related shock on 

agriculture. This probability is given by one less the probability of j episodes of shocks 

(Pritchett, Suryahadi, & Sumarto, 2000): 

𝑅ℎ(𝑛, 𝑧) = 1 − [(1 − (Pr(𝑐ℎ,𝑡+1) < 𝑧),… , (1 − (Pr(𝑐ℎ,𝑡+𝑗) < 𝑧))]  (8) 
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Given threshold probability, p, and an indicator function Λ(. ), which equals one if the 

indicator function is true and zero if otherwise, Pritchett et al. (2000) define a household as 

vulnerable if the risk in j periods exceeds the threshold probability, p. 

𝑉ℎ𝑡(𝑝, 𝑛, 𝑧) = Λ(𝑅ℎ𝑡(𝑛, 𝑧) > 𝑝)      (9) 

The consumption generating process can be specified as a multilevel process, as suggested 

by Günther and Harttgen (2009). The Multilevel Mixed-Effects ML regression is specified 

as:  

ln 𝐶𝑖𝑗 = 𝛽0𝑗 + 𝐗𝑖𝑗𝜷𝟏𝒋 + 𝜀ℎ        (10) 

Where Cht is the consumption expenditure per capita for household h, Xh is the observable 

vector of household characteristics (demographic characteristics, physical capital, human 

capital, demographic factors) and climate shocks (i.e. droughts and floods), β is a vector of 

parameters, and Ɛh is a zero-mean disturbance term that captures household’s eccentric 

attributes accounting for variation in per capita consumption for households that has not 

been explained by the model. For consistent and unbiased estimates of parameters, the error 

term must satisfy the following expectations: 

𝐸(𝜀ℎ𝑡|𝐗) = 0 

𝐸(𝜀ℎ𝑡, 𝜀𝑗𝑡|𝐗) = {
𝜎𝑒

2 ∀ ℎ = 𝑗
0   ∀ ℎ ≠ 𝑗

       (11) 

𝐸(𝜀ℎ𝑡, 𝜀ℎ𝑠|𝐗) = 0  ∀ 𝑡 ≠ 𝑠 

𝐸(𝜀ℎ𝑡𝐗) = 0 

𝜀ℎ𝑡~𝑁(0, 𝜎𝑒
2) 

Equation 10 yields the first moment of consumption for given farmer i, in district j. District 

specific factors that affect the intercept and the propensity to consume can be included in 
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equation 10 in the determination of the variance of consumption. The intercept and the 

propensity to consume in equation 10 can be decomposed into:  

𝛽0𝑗 = 𝛾00 + ∑𝛾01𝑍𝑗 + 𝑢0𝑗     (12) 

𝛽1𝑗 = 𝛾10 + ∑𝛾11𝑍𝑗 + 𝑢1𝑗        (13) 

Substitution of equation 12 and 13 into equation 10 yield an estimable form of equation 

specified as:  

ln 𝐶𝑖𝑗 = 𝛾00 + 𝛾01𝑍𝑗 + 𝐗𝑖𝑗(𝛾10 + ∑𝛾11𝑍𝑗) + 𝑢1𝑗𝐗𝑖𝑗 + 𝑢0𝑗 + 𝜀𝑖   (14) 

Where the first three terms in the right and side of the equation form the deterministic part 

of the model, the last three terms are the stochastic component. The stochastic part is 

decomposed into two; 𝑢1𝑗𝐗𝑖𝑗 + 𝑢0𝑗  measures the variance of consumption across districts 

that are not accounted for and 𝜀𝑖 measures variance of consumption within district that is 

not accounted for. The consumption variance is set to be a function of both farmer 

characteristics and community and incidence of climate-related stresses. The consumption 

variance takes the form: 

 

Idiosyncratic variance:  𝜀𝑖𝑗
2 = 𝜙0 + ∑𝜙1𝑋𝑖𝑗 + ∑𝜙2𝑍𝑗   (15) 

Covariate variance:  𝑢0𝑗
2 = 𝜏0 + ∑𝜏1𝑍𝑗     (16) 

Total variance:  (𝜀𝑖𝑗 + 𝑢0𝑗)
2

= 𝜃0 + ∑𝜃1𝑋𝑖𝑗 + ∑𝜃2𝑍𝑗   (17) 

 

From the preceding equation, the expectation of consumption (𝑙𝑛 𝐶̂𝑖𝑗) and the components 

of variance of consumption are determined from equations 14 to 17.  
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Any given household i, with characteristics X can then have the vulnerability to poverty 

level calculated using the estimated coefficients such that 

𝑉̂𝑖𝑡 = 𝑃𝑟̂( 𝑙𝑛 𝐶𝑖,𝑡+𝑗 < 𝑙𝑛 𝑍 |𝑋𝑖) = Φ(
𝑙𝑛 𝑧−𝑙𝑛 𝐶̂𝑖𝑗) 

√𝜎̂𝑖𝑗
2

)     

 (18) 

Where 𝑉̂𝑖𝑡 is estimated vulnerability to expected poverty (i.e. this is essentially the 

likelihood of a consumption per capita being below the poverty cut off point given the 

household-specific attributes), Φ(. )is the cumulative density function of the standard 

normal distribution, and  𝜎 is the standard error from equation (14). Where lnZ is the log 

of the minimum consumption/income level beyond which a household would be called 

poor. Using the assumption that the log of consumption is normally distributed, the 

estimates from the above equation can be used to derive the probability of a household 

being vulnerable. However, vulnerability estimates will also depend on the poverty line, 

the expected log of consumption and its variance. Vulnerability to expected poverty 

decreases with increased variability in expected consumption. 

 

Several studies that studied household consumption patterns assumed that the random error 

term is a result of measurement error and that its variance is constant across all households. 

This is a weak assumption in that it results in inefficient parameter and vulnerability 

estimates (Chaudhuri, 2003). This problem can be resolved by estimating model 

coefficients using a maximum likelihood approach (Amemiya, 1977).  
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The predictor variables adopted in this study follow those that have commonly been used 

in previous studies (Chaudhuri, Jalan, & Suryahadi, 2002; Tesliuc & Lindert, 2002; Sarris 

& Karfakis, 2006; Shewmake, 2008). Table 1 below presents definitions of the variables 

included in the model.  

 

Having derived the vulnerability of farmers to climate stresses, there is a need to compose 

it into various measures to understand its various facets at length. The purpose of 

decomposing vulnerability is to satisfy three principles as has been applied in poverty 

measurement: First, a measure of vulnerability should be able to identify the proportion of 

the population that is vulnerable. Second, should be sensitive to the distribution across the 

population being studied and lastly, should be able to capture the severity of the 

vulnerability. These three classes of vulnerability can be measured following Foster et al. 

(1984), which decomposes vulnerability as:  

𝑉𝛼 =
1

𝑛
[∑ (𝑊0 −

𝑊𝑖

𝑊0
)𝛼𝑞

𝑖=1 ]   (19) 

Where, 𝑉𝛼 is the vulnerability measure, 𝑊0 is the threshold of vulnerability, 𝑊𝑖 is the actual 

vulnerability of farmer i, n is the total number of farmers in the analysis, q is the number of 

farmers above the vulnerability threshold, 𝛼 is the sensitivity indicator and takes on a value 

of 0 for head count vulnerability, a value of 1 for vulnerability gap or depth, and a value of 

2 for severity of vulnerability or the distribution pattern of the vulnerability among the 

vulnerable.  

 

The vulnerability to poverty in the future as a result of climate shocks is calculated at two 

points in time, 2013 and 2016, with 2010 as the baseline for 2013 and 2013 as the baseline 
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for 2016. The vulnerability index is bounded between 0 and 1. Unlike poverty, vulnerability 

is an ex-ante concept, it is not possible to compute it for 2010 as this year is the first wave 

of the panel data used in this study. Following Chaudhuri et al. (2002), the vulnerability 

threshold is set at an arbitrary value of 0.5. Those households with a vulnerability index of 

above 0.5 are taken to be vulnerable. An index of 0.5 means that the household has 50% 

likelihood of becoming poor in the future. 

 

The first step in the derivation of the vulnerability stand of the farmers is to estimate the 

expectation of their per capita consumption and the variance of the same. Since the interest 

is to assess the level of vulnerability that is induced by climate-related stresses, a number 

of stresses or shocks are included in the consumption model. Two consumption models are 

fitted, one for 2013 and another for 2016. The 2013 consumption function uses per capita 

consumption in 2013, climate shock variables for 2013 and farmer specific characteristics 

for 2010. Similarly, the consumption function for 2016 used per capita consumption for 

2016 as a response variable, climate shock variables for 2016 and farmer specific 

characteristics for 2013. Thus, the farmers’ characteristics now (in period 𝑡) will influence 

the resilience capacity to poverty in the future (in period 𝑡 + 1)  as climate stresses 

intensify. 

 

3.3.3  Modeling interplay between poverty and vulnerability 

Another important step after determining the probability of future poverty (vulnerability) 

is to determine the determinants of poverty and, in a way, ascertain the role of vulnerability 

to actual future poverty state. The question is, does vulnerability trap farmers into poverty. 
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To implement this piece, the poverty state is first determined at two points; for 2013 and 

2016 for each farmer. A binary variable for poverty, p, is developed by setting p = 1 if the 

log of per capita food consumption, 𝑙𝑛 𝐶ℎ𝑡  falls short of the poverty line, 𝑙𝑛 𝑍,  (𝑙𝑛 𝐶ℎ𝑡 <

𝑙𝑛 𝑍 |𝑋ℎ) given the farmer’s characteristics, the presence/absence of climate shocks in 2013 

and 2016, and poverty,  p = 0 for otherwise. Mixed-Effects Probit model, Pr(𝑃𝑖 = 1) =

Φ(𝑋ℎ𝜓′), is used to estimate the effect of different covariates of the poverty state of a 

farmer. Where Φ is the cumulative standard normal distribution. Vulnerability to poverty 

in 2010 is used as input into the poverty regression for 2013. Similarly, vulnerability to 

poverty in 2013 is used as an argument in the 2016 poverty function.  

 

Further analysis is done to understand the poverty transition dynamics between 2010 to 

2016. There are four sets of states of poverty transition over the period of analysis, which 

can be decomposed at two time periods; 2010 to 2013 and 2013 to 2016. The four sets of 

poverty transition outcomes that we observe over these two periods are;  

 Poor in 2010 and poor in 2013 

 Poor in 2010 and non-poor in 2013 

 Non-poor in 2010 and poor in 2013 

 Non-poor in 2010 and Non-poor in 2013 

For the second period of analysis (2013 – 2016) we have: 

 Poor in 2013 and poor in 2016 

 Poor in 2013 and non-poor in 2016 

 Non-poor in 2013 and poor in 2016 

 Non-poor in 2013 and Non-poor in 2016 



 

94 
 

For each period of analysis, we have outcomes that are mutually exclusive. Thus, it could 

be theoretically tempting to think that the candidate model to use in this scenario is the 

Multinomial Logit Model (MLM) as others have used before  (Glewwe, Gragnolatti, & 

Zaman, 1999; McCulloch & Baulch, 2000; Neilson, Contreras, Cooper, & Hermann, 2008). 

However, given that the current state of poverty is not independent of the previous states 

of poverty, MLM may not be appropriate as it imposes a strong assumption of 

independence of invariant alternatives. This assumption implies that there is no cross-

equation correlation of error terms. If the data does not conform to this assumption, having 

error terms correlated across equations, use of MLM will result in sample selectivity bias 

due to the initial condition dependency problem (Heckman, 1981). Even if the logit models 

were modelled as separate equations for each outcome, still it would take the initial state as 

exogenous. Failure to correct these problems will result in biased estimates (Kassie, Jaleta, 

Shiferaw, Mmbando, & Mekuria, 2013) and misorient the shape of relevant policy 

interventions. 

 

To remedy the problem associated with MLM, this study uses the Multivariate Probit model 

which allows for error terms to be freely correlated across equations (Newman & 

Canagarajah, 2000). Specification of the poverty transition multivariate probit, we begin 

by specifying the farmer’s consumption function:  

𝑓1(𝑌𝑖,1) = 𝜒𝑖,1𝛽1 + 𝜀𝑖,1     (20) 

Where Y is the per capita farm household consumption, X is a vector of farmer specific 

characteristics associated with per capita consumption, 𝜀 is the random error term, 𝑓1is a 

monotonic transformation indicator that ensures that the random error term follows a 
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standard normal distribution. Therefore, four possible poverty transition outcomes emanate 

from the consumption function, which in turn define the dependent variables for the 

multivariate probit model. The probability of each possible transitioning from state i of 

poverty to state j (let’s define it as outcome k) is given by a system of multivariate probit 

equations specified as: 

Pr(𝑃𝑘 = 𝑘) = Pr(𝑌𝑡 ≤ 𝑧 | 𝑌𝑡−1 ≤ 𝑧) = Φ(𝑓1(𝑌) − 𝑥𝛽)    (21) 

Pr(𝑃𝑘 = 𝑘) = Pr(𝑌𝑡 ≤ 𝑧 | 𝑌𝑡−1 ≥ 𝑧) = Φ(𝑓1(𝑌) − 𝑥𝛽)                  (22) 

Pr(𝑃𝑘 = 𝑘) = Pr(𝑌𝑡 ≥ 𝑧 | 𝑌𝑡−1 ≤ 𝑧) = Φ(𝑓1(𝑌) − 𝑥𝛽)  (23) 

Pr(𝑃𝑘 = 𝑘) = Pr(𝑌𝑡 ≥ 𝑧 | 𝑌𝑡−1 ≥ 𝑧) = Φ(𝑓1(𝑌) − 𝑥𝛽)                 (24) 

Where Φ is the standard normal distribution of the probability of a given transition, which 

results in a probit model, z is the poverty threshold, 𝑌𝑡 is the per capita consumption level 

in period t and 𝑌𝑡−1 is the previous period per capita consumption. The associated variance-

covariance matrix of the system of equations is given by:  

∑ =[
1 … 𝑅ℎ𝑜14
⋮ ⋱ ⋮

𝑅ℎ𝑜41 … 𝑅ℎ𝑜44
] 

Where Rho is the cross-equation correlation of the error term, the model system is estimated 

using the simulated maximum likelihood approach in R software. In all models, I use Chi-

square for F-statistic for overall significance of the model, t-statistics or the p-values for 

the individual significance of variables, Variance Inflation Factor (VIF) to check 

orthogonality. Table 3.1 presents a summary statistic for the variables that are included in 

the empirical models. The table presents the means along with associated standard errors 

in parenthesis. 
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Table 3.1: Variables in included in the empirical models 
Variables 2010 2013 2016 

 Mean (std Error) 

Log of per capita consumption 10.4970 10.8757 11.1083 

 (0.0220) (0.0223) (0.0231) 

Household size 5.1186 5.7481 5.9911 

 (0.0713) (0.0685) (0.0656) 

Literacy (1/0) 0.6977 0.7320 0.7291 

 (0.0114) (0.0112) (0.0114) 

Years of schooling 7.1417 7.1716 6.9019 

 (0.1294) (0.1260) (0.1204) 

Female share in household 0.8267 1.0552 1.3648 

 (0.0096) (0.0164) (0.0246) 

Age of farmer 43.300 46.0839 47.3989 

 (15.624) (14.45) (15.034) 

Members age 0 to 9 1.8080 2.1875 2.3363 

 (0.0423) (0.0455) (0.0541) 

Members age 10 to 17 0.9698 1.3675 1.7172 

 (0.0358) (0.0401) (0.0452) 

Female Members age 18 to 59 1.0965 1.4888 1.7841 

 (0.0179) (0.0290) (0.0371) 

Male Members age 18 to 59 1.0241 1.4291 1.6682 

 (0.0216) (0.0337) (0.0386) 

Members age 60 or greater 0.1719 0.2957 1.0018 

 (0.0148) (0.0190) (0.0554) 

Married (1/0) 0.8492 0.8871 0.9037 

 (0.0113) (0.0097) (0.0088) 

Dependency ratio 1.1489 1.1412 1.0931 

 (0.0281) (0.0248) (0.0227) 

Waged occupation (1/0) 0.3246 0.4263 0.5352 

 (0.0178) (0.0244) (0.0288) 

Off-farm enterprise (1/0) 0.1849 0.2612 0.2507 

 (0.0123) (0.0134) (0.0130) 

Large ruminant livestock (1/0) 0.0312 0.0541 0.0562 

 (0.0055) (0.0069) (0.0069) 

Small ruminant livestock (1/0) 0.2844 0.3461 0.4193 

 (0.0143) (0.0145) (0.0147) 

Poultry (1/0) 0.4241 0.5280 0.5343 

 (0.0157) (0.0153) (0.0149) 

Agriculture land  (ha) 3.9693 1.9789 2.1488 

 (2.2573) (0.0667) (0.0759 

Distance to road network  (km) 7.6524 7.7901 8.1784 

 (0.2793) (0.2799) (0.2804) 

Distance to district center  (km) 59.0189 21.6381 23.0009 

 (0.9051) (0.4963) (0.5203) 

Droughts  (1/0) 0.4010 0.3144 0.4273 

 (0.0155) (0.0142) (0.0148) 

Floods  (1/0) 0.0442 0.1446 0.1142 
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Variables 2010 2013 2016 

 Mean (std Error) 

 (0.0065) (0.0107) (0.0095) 

Crop pests  (1/0) 0.0724 0.2043 0.1392 

 (0.0082) (0.0123) (0.0103) 

Livestock disease  (1/0) 0.0724 0.2174 0.1285 

 (0.0082) (0.0126) (0.0100) 

Irregular rains  (1/0)  0.5000 0.7012 

  (0.0153) (0.0137) 

N 995 1,072 1,121 

 

I also compute the probability of entering and the existing vulnerability trap. From the 

transition matrix of bivariate movements into and out of vulnerability, we can calculate the 

associated probability of entering (E) or leaving (L) the vulnerability spell as follows:  

𝑝(𝐸) =
𝐸𝑡 ∈ 𝑁𝑉𝑡−1

𝑁𝑉𝑡−1
 ∈ [0,1] 

 

𝑝(𝐿) =
𝐿𝑡 ∈ 𝑉𝑡−1

𝑉𝑡−1
∈ [0,1] 

Where in the above two equations, 𝐸𝑡 ∈ 𝑁𝑉𝑡−1 is the set of farmers that are entering the 

vulnerability spell in period t; which is given by the subset of farmers that are vulnerable 

in period t, from within a set of farmers that were not vulnerable in period t-1. 𝑁𝑉𝑡−1 is the 

set of farmers that are not vulnerable in period t-1. 𝐿𝑡 ∈ 𝑉𝑡−1 is the set of farmers leaving 

vulnerability spell in period t, given by the subset of farmers that are not vulnerable in 

period t, from within a set of farmers that were vulnerable in period t -1. 

 

3.3.4 The Data sources 

This study uses a panel component of Living Standards Measurement Survey (LMSM) data 

that was collected by Malawi’s National Statistical Office with support from World Bank. 

The first wave of the data was collected from March 2010 to March 2011 under the 
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umbrella of the World Bank Living Standards Measurement Study.  A sub-sample of the 

first wave comprising of 204 enumeration areas (EAs) out of 768 EAs was selected prior 

to the start of the first wave field work with the intention to (i) to track and resurvey these 

households in 2013 as a second wave as part of the Integrated Household Panel Survey 

(IHPS) and (ii) visit a total of 3,246 households in these EAs twice to reduce recall 

associated with different aspects of agricultural data collection. At baseline, the IHPS 

sample was selected to be representative at the national. Once a split-off individual was 

located, the new household that he/she formed/joined since 2010 was also brought into the 

IHPS sample. In view of the tracking rules, the final IHPS sample, therefore, includes a 

total of 4,000 households that could be traced back to 3,104 baseline households. In parallel 

with the fourth integrated household survey (IHS4) operations, also implemented the 

Integrated Household Panel Survey 2016 as a third wave or follow up to the IHPS. The 

IHPS 2016 subsample covered a national sample of 102 EAs (out of the 204 baseline IHS3 

panel EAs), and was conducted during the first half of IHS4 fieldwork. 

 

The IHPS consisted of four questionnaire instruments; the household questionnaire, the 

agriculture questionnaire, the fishery questionnaire, and the community questionnaire. Of 

interest for this study were the agriculture and household questionnaires. The agriculture 

questionnaire allows, among other things, for extensive agricultural productivity analysis 

through the diligent estimation of land areas, both owned and cultivated land, labour and 

non-labour input use and expenditures, and production figures for main crops and livestock. 

The household questionnaire encompassed economic activities, demographics, welfare and 

other sectoral information of households. It covers a wide range of topics, dealing with the 
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dynamics of poverty (consumption, cash and non-cash income, savings, assets, food 

security, health and education, vulnerability and social protection).  Geospatial data on 

climate variables (rainfall and temperature) geographical variables (altitude) were also 

compiled for all waves of the panel.  

 

3.4 Results and Discussion 

3.4.1 Vulnerability levels 

As a common practice with econometric approaches, I first implement house cleaning to 

check for the presence of multicollinearity in the variables to be included in the models so 

that variables that may posit redundant information about the dependent variable is 

controlled out. I use the Variance Inflation Factor (VIF) and eigenvalues to ascertain the 

level of collinearity in the variables for the 2013 and 2016 consumption functions, 

respectively. The results for the collinearity diagnostics are presented in Appendix 1 and 2.  

 

The diagnostics results show that all variables embodied a tolerable level of collinearity. 

The rule of thumb is that VIF should not exceed 10, and in our case, all the VIF values are 

far to 10.   The reported condition indices are also within the tolerable range, not exceeding 

a threshold of 30. None of the eigenvalues is close to 0 on another front, showing that the 

estimates from the model are stable and that minor changes in the data values would 

transmit large changes in the estimated coefficients. Table 3.2 presents the results of the 

multilevel mixed-effects maximum likelihood model for future consumption and its 

variance conditioned on future climate stresses and current farmer characteristics.  
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Table 3. 2: Multilevel Mixed-Effects ML regression model for per capita 

consumption 
 2013  (t =2010)  2016 (t = 2013) 

 𝐸(𝑙𝑛𝐶|𝑋ℎ) 𝑉𝑎𝑟(𝑙𝑛𝐶|𝑋ℎ)  𝐸(𝑙𝑛𝐶|𝑋ℎ) 𝑉𝑎𝑟(𝑙𝑛𝐶|𝑋ℎ) 

Household size (t) -0.06969 0.05168  -0.05318 -0.04336 

 (-6.83)** (1.38)  (-4.98)** (-1.19) 

Literacy level (t) 0.00014 0.17191  0.05129 0.28705 

 (0.00) (0.81)  (0.75) (1.23) 

Schooling years (t) 0.05862 0.05311  0.04712 0.00587 

 (10.21)** (2.51)*  (7.60)** (0.28) 

Share of females (t) -0.17898 -0.22396  -0.17487 -0.43039 

 (-0.60) (-0.20)  (-1.23) (-0.89) 

Age of farmer (t) 0.03299 -0.06030  0.06466 0.06662 

 (2.74)** (-1.36)  (4.28)** (1.29) 

Age squared (t) -0.00028 0.00097  -0.00070 -0.00064 

 (-1.74) (1.62)  (-3.48)** (-0.93) 

Married (t) 0.01802 -0.30778  0.04766 0.14378 

 (0.29) (-1.33)  (0.65) (0.57) 

Dependency Ratio (t) -0.06916 -0.09703  -0.04351 -0.05392 

 (-3.02)** (-2.07)*  (-3.53)* (-4.41)** 

Female share squared (t) 0.15378 0.09851  0.08729 0.15173 

 (0.90) (0.16)  (1.76) (0.89) 

Off-farm enterprise (t) 0.25568 -0.03411  0.28194 0.17392 

 (5.02)** (-0.18)  (5.71)** (1.03) 

Own Livestock (t) 0.00397 0.22692  0.07791 -0.07805 

 (3.10)** (1.48)  (4.68)** (-0.49) 

Drought (t+3) -0.15548 -0.02483  -0.00681 0.11201 

 (-3.35)** (-0.15)  (-0.14) (0.69) 

Floods (t+3) -0.02174 0.25866  -0.06966 0.43976 

 (-0.38) (1.24)  (-0.88) (1.63) 

Crop pests (t+3) -0.03318 -0.52845  -0.13436 -0.48306 

 (-0.59) (-2.55)*  (-1.63) (-1.72) 

Livestock disease (t+3) -0.06761 0.74731  -0.03570 -0.37342 

 (-1.20) (3.62)**  (-0.43) (-1.32) 

Irregular rains (t+3) -0.02796 -0.20007  -0.11370 0.12289 

 (-0.66) (-1.28)  (-2.34)* (0.74) 

Constant 10.40803 -2.11291  10.2626 -2.49588 

 (4.24)** (-2.27)*  (6.07)** (-2.56)* 

Random-effects Parameters      

SD district Level 0.17024 

(5.157) 

0.16430 

(4.212) 

 0.1975 

(2.1544) 

0.1643 

(4.345) 

SD individual Level 0.5508 

(0.1286) 

2.0461 

(3.442) 

 0.2566 

(4.775) 

2.0461 

(3.212) 

Wald Chi-Square 341.88** 41**  297.76** 142.41** 

N 973 973  1,032 1,032 

Source: Author’s calculation from LSMS 2010, 2013, 2016, t statistics in parentheses. * p<0.05; ** p<0.01 
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The Wald Chi-Square for all the models are large enough and significant (p<0.05), 

providing evidence that the joint effect of covariates on the dependent variable was not 

neutral. I used the sandwich estimator of standard errors to insure against possible 

heteroskedasticity in the models. Adequacy of the variables included in the models was 

tested using the Ramsey RESET test for omitted variables. All four models reported an F-

statistic of p <0.01, alluding to rejection of the null hypothesis of omitted variables.  

 

The results show that the size of farming households has a negative effect on future 

consumption for both models of 2013 and 2016. With larger a house size, the farmer’s 

propensity to save decreases. Savings are necessary to cushion future consumption when 

in times of climate-related shocks. Small household sizes will have enough savings, which 

the farmer’s household can draw on to smoothen consumption in times of climate shocks. 

The effect of years of schooling was positive and significant, meaning that more years of 

schooling will have a positive effect on future consumption.  

 

The age of the farmer has a positive effect on consumption. Younger farmers are energetic 

and are usually early adopters of new agricultural innovations.  As they become more 

experienced with ageing, they earn more income and hence increase consumption until their 

age reaches an inflexion point. As they become older, their productivity decreases and, in 

turn, decreases their consumption, as shown by the squared variable for the age of the 

farmer, having negative coefficients. Dependence was computed based on age group 

distribution in the household. Dependents outside the household were not captured in the 

data.  Dependency burden has a decreasing effect on consumption, regardless of the amount 
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of income the farmer earns, with more dependents, the per capita consumption drops. On 

the other hand, with fewer dependents, the farmer will be able to save surplus disposable 

income for future consumption in times of shocks.  

 

Off-farm enterprise ventures have a positive effect on consumption. Off-farm income is 

usually resilient to climate-related stresses compared to agriculture enterprises. Thus, when 

climate-related stresses intensify in the future, those farmers who solely rely on agriculture 

face a decrease in consumption, while those engaging in other non-farm income-generating 

activities maintain their consumption path. Similarly, livestock ownership positively 

influenced future consumption. Livestock assets can quickly be converted into liquid 

capital to smoothen climate-induced income shocks. As such, it has a minimizing effect on 

the variance of consumption for the farmer. 

 

Using the regression estimates for the consumption and variance of consumption in Table 

3.1 and the 2013 and 2016 poverty line, respectively, I derive the vulnerability to expected 

poverty scores for 2013 and 2016. The scores are derived from the status of the household 

in 2010 (2016) and the economic condition of the household in 2013 (2016), given the 

idiosyncratic and covariate climate-related shocks facing the farmer in 2013 (2016), 

respectively. Figure 3.1 is output from R software showing the distribution of farmers 

vulnerability to expected poverty given the future climate-induced stresses.  
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Figure 3.1: Geospatial distribution of vulnerability across Malawi 
 

The figure shows that vulnerability is more concentrated towards the south, with the general 

decline in invulnerability in the north over analysis periods. The two districts at the bottom, 

Chikwawa and Nsanje, maintain high vulnerability scores. This result is not surprising 

because these are the districts that are often hit by droughts and floods. 

Figure 3.2 is a scatter plot of vulnerability to expected poverty scores and log of per capita 

consumption in the future. The horizontal strike inside the scattered space shows the 

vulnerability threshold of 0.5. The vertical strike is the food consumption poverty line. The 

food poverty line represents the cost of a food bundle that provides the necessary energy 

requirements per person per day. First, the daily calorie requirement was set at 2,400 

kilocalories per person. Second, the price per calorie was estimated from the population in 
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the fifth and sixth deciles of the per capita consumption distribution. Last, the food poverty 

line was calculated as the daily calorie requirement per person multiplied by the price per 

calorie, following  (WorldBank, 2018) 

 

Figure 3. 2: Household vulnerability to poverty in 2013 

 

The scatter plot in space is divided into four quadrants; A, B, C and D. Each quadrant 

presents a unique combination of vulnerability to a deficient levels of per capita 

consumption in the future. Quadrant A shows a cluster of currently poor households and 

are expected to remain poor in the future. Quadrant B shows households that is currently 

poor but is expected to transition out of poverty in the future. Quadrant C presents 

households that are currently not poor, and their consumption will be resilient to future 

climate-related shocks. Finally, quadrant D include households that are not poor now but 

will have a weak resilience capacity in future to climate-related shocks. Similarly, in Figure 

3.3, the same analogy applies to quadrants A, B, C and D. 
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Figure 3.3: Household vulnerability to poverty in 2016 
 

3.4.2 Vulnerability transition 

The study looked at the vulnerability change across time for the surveyed farmers. Table 2 

shows the numbers of farmers that are vulnerable to climate stresses at various points in 

time, as defined by a vulnerability threshold of 0.5. A score of at least 0.5 means that a 

farmer is vulnerable, and a score of fewer than 0.5 shows non-vulnerable. A quick synopsis 

shows that vulnerability headcount to expected poverty has had an increasing trend over 

the period of analysis. At first baseline, that is the year 2010, 47% of the farmers were 

vulnerable to future climate stresses of 2013. In 2013 (baseline for 2016), the number of 

vulnerable farmers to 2016 climate-related stresses increased to 58%. I conducted further 

analysis to check the vulnerability of farmers in 2010 to long-run climate-related shocks 

(in 2016). The data shows that such vulnerability is still high but less than the level triggered 

by 2013 climate stresses. This shows that short-run climate stresses will have a high impact 
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on vulnerability than long-run climate stresses will do, which provides a bit more time for 

farmers to prepare.  The increasing trend in the vulnerability headcount over time is in line 

with the direction of the intensity of shocks over time (Poterie, et al., 2018). In 2013, 61% 

of farmers experienced climate-related shocks, whereas, in 2016, 79% of farmers 

experienced the shocks.  

 

The vulnerability gap (VG), defined by the mean distance below the vulnerability threshold 

as a proportion of that threshold, is usually interpreted as a measured of depth of 

vulnerability (Gordon & Abrams, 2021).  

  

Table 3. 3: Temporal vulnerability change  

 Vulnerability trigger  

Base Vulnerable indicator 2013 shocks 2016 shocks 

2010 Vulnerability headcount 0.47 0.29 

 Vulnerability gap -0.53 -0.36 

 Severity of vulnerability  0.48 0.43 

 Vulnerability headcount - 0.58 

 Vulnerability gap - -0.60 

2013 Severity of vulnerability  - 0.74 

 

The vulnerability gap of the farmers was 53% for 2013, 70% for 2016 and 36% for the long 

run. Finally, the severity of vulnerability computed for 2013 was 48%. This implies that 

there is a distinction in the distribution of vulnerability among those who are vulnerable. It 

shows that vulnerability is skewed towards the most vulnerable. The assumption with the 



 

107 
 

vulnerability gap is that a transfer to the vulnerable farmers would have the same welfare 

effect on farmers’ vulnerability as that gained by the less vulnerable farmers. This may 

result in disoriented equity outcomes of a policy aimed at reducing the vulnerability of the 

farmers to climate stresses. As such, this merits the need to take into account the severity 

of vulnerability among the study population. 

 

It is also interesting to study how farmers are entering and exiting the vulnerability spell 

over time. That is, are those vulnerable at baseline continue to be vulnerable in future, or 

they exit the spell and vice versa. Table 3.4 shows the vulnerability transition for individual 

farmers and the associated probability of transition. The analysis shows that 38.7% of the 

studied farmers were vulnerable at baseline (2010) and remained vulnerable in 2013 (Total 

vulnerable were about 58% in 2013). This shows that a large percent of those vulnerable 

have remained in the vulnerability trap over the period of analysis. A very small percent of 

farmers (8.8%) who were in the vulnerable set at the baseline escaped the spell in 2013. 

We further see that 19.3% of the farmers who were not vulnerable at baseline are entering 

the vulnerability trap in 2013. About 33.2% seem to be resilient to climate-related stresses 

and maintain their non-vulnerability status between the baseline and 2013. The movements 

across the four sets of analysis show that vulnerability was a net absorber of farmers. The 

greatest change in movement is noticed in moving from vulnerability set into the same set. 

The second absolute largest change is coming from farmers who have been resilient to the 

vulnerability traps. Non-vulnerability set is less absorptive in net terms.  
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Table 3. 4: Temporal transition into and out of vulnerability trap 

Status in 2013                 Status in 2016 (% of farmers)  

Vulnerable Non-vulnerable Total 

Vulnerable 38.7 8.8 47.5 

Non-vulnerable 19.3 33.2 52.5 

Total 58.0 42.0 100 

Probability of entering and leaving vulnerability  

 Entering  Leaving  

2013 – 2016 0.37 0.19  

Source: Author computation from Malawi IHSP panel 

In this study, transition probabilities are computed for each ordered pair of years on which 

vulnerability indices were computed. The probability of entering poverty (0.37) is much 

large than the probability of leaving poverty (0.19), ( 𝑝(𝐸) >  𝑝(𝐿)), about 2 times larger 

(Table 3.4).  

 

3.4.3 Determinant of poverty  

Table 3.5 reports parameter estimates for the mixed-effects probit models for 2013 and 

2016 poverty. Within the same model, I present the impact of the ex-ante vulnerability on 

ex post poverty. That is, vulnerability in 2010 is regressed on both 2013 poverty and 2016 

poverty. Vulnerability in 2013 is regressed on 2016 poverty.  Since probit coefficients 

cannot be interpreted directly as an effect of covariates, only the marginal effects are 

presented for plausible interpretation of the coefficient estimates. Results for the 

collinearity diagnostics are presented in Appendix A3.1 to A3.2. The variables included in 

the model did not show any serious level of multicollinearity as determined by VIF, 
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Condition index and eigenvalues. One problematic variable in both models was crop 

diversification which indicated a VIF of more than 10, an eigenvalue of close to zero, and 

a condition index of greater the 30. For this reason, the crop diversification variable was 

dropped from both models.  

 

The results provided evidence that ex-ante vulnerability in 2010 and 2013 translated into 

ex-post poverty for 2013 and 2016, respectively. For the first case of the 2013 poverty 

model, the results show that a unit increase in the vulnerability to poverty in 2010 increased 

the probability of actual poverty in 2013 by 19%. Whereas unit change in vulnerability in 

2013 translated into 17% of actual poverty in 2016.  

 

These capture the short-run impact of vulnerability on ex-post poverty. The long-run impact 

of the vulnerability is captured by regressing 2010 vulnerability on 2016 poverty. The result 

shows similar effects, but the magnitude of the impact dies off over time. While the same 

vulnerability had an impact of 19% on poverty in the short run, in the long run, the impact 

reduced to 8%. 

 

Farmers’ age shows that it is a negative correlate of poverty, but this is true only for the 

young population of farmers. As farmers are growing in age at earlier years, poverty tends 

to go down. However, the squared age of farmers shows a reversal of the effect. This 

implies that in the old years of farmers, further ageing results in increased poverty. With 

ageing, farmers tend to grow feeble, and their marginal productivity of labour and 
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managerial skills tend to decline. Not only does the age of the farmer alone plays an 

important role in poverty determination but also that of other household members and  

 

Table 3. 5: Multilevel Mixed-Effects Probit Model for Determinants of Poverty 

 

* p<0.05; ** p<0.01, Absolute t-statistics in parenthesis 

 

 Poverty in 2013  Poverty in 2016 

Variable Coefficients  Coefficients 

Vulnerability in 2010 0.1987 (5.51)**  0.0806 (2.67)** 

Vulnerability in 2013 -  -   0.1732 (5.18)** 

Household size -0.1155 (2.48)*  0.0641 (3.30)** 

Years of Schooling -0.0234 (1.40)  -0.0150 (1.60) 

Farmer’s age -0.0333 (2.52)**  -0.0462 (2.74)** 

Farmer’s age squared 0.0430 (1.21)  0.0060 (1.80) 

Dependency share -0.0152 (0.58)  -0.0299 (0.46) 

No. individuals in hh aged 0 - 9yr 0.0187 (10.3)**  0. 0155 (7.05)** 

No. individuals in hh aged 10 - 17 0.0102 (5.35)**  0.0094 (9.08)** 

No. females in hh aged 18 - 59 -0.0431 (2.51)*  -0.0342 (1.01) 

No. males in hh aged 18 - 59 -0.1151 (1.39)  -0.1535 (2.41)* 

No. individuals in hh aged ≥ 60 0.0291 (0.97)  0.0069 (0.50) 

No. individuals with industry occupation -0.1328 (13.8)**  -0.1175 (3.20)** 

Large ruminants livestock (0/1) -0.0131 (0.32)  -0.2439 (2.76)** 

Small ruminants livestock (0/1) -0.1004 (2.59)**  -0.0520 (2.53)** 

Poultry (0/1) -0.0962 (7.34)**  0.0710 (11.3)** 

Off-farm enterprise -0.0309 (0.80)  -0.1748 (2.83)** 

Safety nets 0.0435 (0.95)  0.0522 (0.91) 

Drought (0/1) 0.3297 (14.1)**  0.2102 (12.3)** 

Floods (0/1) 0.1589 (2.24)*  0.2555 (2.68)** 

Crop pest infestation (0/1) 0.0979 (0.16)  0.1743 (1.79) 

Livestock disease infestation (0/1) 0.0140 (0.36)  0.0102 (0.00) 

Irregular rains (0/1) 0.1218 (6.80)**  0.1266 (4.44)** 

Distance to road network 0.0013 (0.79)  0.0095 (2.47)* 

Distance to agricultural market 0.0016 (1.08)  0.0026 (1.16) 

Distance to district market 0.4687 (3.51)**  0.0023 (1.12) 

      

Random-effects Parameters      

SD district Level 0.2248 2.8312  0.3929 5.1092 

SD individual Level 0.5797 3.7303  0.3870 3.8279 

Wald Chi-square 204.2**   138.1**  

N 973   1,032  
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concentration of household members in a given age class. Thus, I look at how various age 

groups coupled with gender concentration affect the poverty of the farming household.  

 

The number of individuals aged 0 to 9 years in the household is positively related to the 

poverty state of the household. When one child in that age group is added to the household, 

the farming household’s poverty probability increases by about 1.7 percentage points. The 

reason is that individuals in this age group are net consumers and still young to supply 

labour for the household production activities. The number of individuals aged 10 to 17 

years in the household was also a positive determinant of poverty but with a lesser 

magnitude than that of the younger age group. The net effect of an added member of 10 to 

17 years is around 1% percentage points. The effect is relatively smaller because apart from 

consumption, they are old enough to provide labour support to some of the household’s 

productive activities, which indirectly have a bearing on its poverty stand. Another 

interesting age block is between 18 to 59, which is considered a productive age group. 

Disaggregating it by gender shows that adding a female member to a household in that age 

group will result in decreased poverty, although the levels of significance are marginal. 

Adding a male member has a greater effect on poverty reduction than female addition. This 

is expected especially because male members have better access to economic opportunities 

compared to their female counterparts within the same productive age group. Statistically, 

the result is indecisive for individuals aged 60 and above. However, economically the 

coefficient shows that members above 60 years are positively associated with poverty in 

the farming household. This corroborates Chen et al. (2016), who established that the 

ageing population had become the key issue of Chinese rural poverty. 
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The number of individuals who have a wage primary industry occupation has the greatest 

effect on poverty reduction. As they earn wages, their contribution to the household’s food 

basket is more direct. A result is noticed for the off-farm enterprises.  Results further show 

that ownership of livestock plays an important role in reducing poverty probability. Since 

livestock is so broad and each type can present different poverty outcomes, three common 

categories are examined; large ruminants, small ruminants (including pig) and poultry. 

Poultry was the most significant determinant of poverty reduction, with a marginal effect 

of 7 – 9%. Probably the ease with which poultry can be sold (low unit price) compared to 

other types of livestock makes it an important livestock type for reducing poverty 

probability in the face of climate shocks. Keeping small ruminants also reduced the risk of 

poverty while large livestock was significant only for 2016 and inconclusive for 2013. It is 

usually difficult to secure markets for large livestock, especially during periods of 

intensified climate stresses as compared to poultry (small livestock) from a unit value 

perspective. In general, the finding is in line with (Alary, Corniaux, & Gautier, 2011) 

 

Poverty was strongly associated with droughts, floods and irregular rainfall. Droughts have 

been shown to have the greatest impact on farmers welfare loss, followed by floods. 

Farmers who faced droughts in 2013 were 32% poorer compared to those who didn’t, and 

there were 21% poor in 2016 than those who were not exposed. Similarly, those who faced 

flood episodes in 2013 (2016) were 15% (25%) poor than those who were not impacted. 

Floods tend to destroy crops, farmers physical assets and displace them.  The results are 

not significant for crop pests and livestock disease infestation. However, irregular rains 
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accounted for 12% poverty difference when compared with farmers who did not face 

irregular rains.  

 

3.4.4 Determinants of Poverty Transition 

The results of Table 3.6 present the determinants of entry into and exit from the poverty 

trap, between 2010 and 2013. Further results for the poverty transition between 2013 and 

2016 are presented in Appendix 6. However, both results are similar in terms of the 

direction they are taking. Overall, the included regressors in the model well jointly 

significant in explaining the poverty mobility (p < 0.01). Further still, the estimates of rho 

were significant, showing that there were significant interactions of the error terms across 

the equations in the multivariate system. This salutes the suitability of multivariate probit 

as opposed to multinomial logit, which cannot stand the assumption of the initial condition 

dependency problem.   

 

I first look at the effect of previous vulnerability to expected poverty on poverty transition. 

The effect size on each poverty trajectory is different. The result points to the largest 

positive relationship between previous vulnerability and being consistently trapped in 

poverty. In contrast, those who escape poverty face a pullback effect by their previous state 

of vulnerability. Even the non-poor to maintain their welfare above the poverty line are 

negatively impacted by the state of vulnerability in the previous period. In net terms, 

vulnerability has a stronger effect on pushing farmers into poverty in the future than the 

effect on those who are non-poor to switch states. 
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Another set of factors that affect mobility across poverty states are covariate shocks. The 

first covariate shock is drought. The results show that drought increases the probability of 

poor households remaining poor and those non-poor slipping off into poverty. However, 

the drought did not explain the movement from poor to non-poor. Floods are also noticed 

to increase the probability of remaining poor or pulling the non-poor into poverty. It further 

limits the chances of those who are poor to shift above the poverty threshold. Livestock 

disease shock is an important factor in constraining the already poor farmers to cross the 

threshold.  

 

Table 3. 6: MV Probit for Determinants of Poverty Transition (2010 – 2013) 

Variable Poor → 

Poor 

Poor → 

Non-Poor 

Non-Poor 

→ Poor 

Non-Poor → 

Non-Poor 

VEP 4.0477 -1.6186 3.4342 -2.5892 

 (8.27)** (4.98)** (2.90)** (2.79)** 

Household hold size 0.1942 -0.2724 -0.1476 -0.0211 

 (3.77)** (2.94)** (2.80)** (0.29) 

Literacy -0.3587 -5.2608 -0.5677 -0.4939 

 (2.47)* (0.04) (3.43)** (1.56) 

Years of Schooling -0.1032 0.0348 -0.0127 0.1659 

 (6.20)** (1.61) (0.88) (8.37)** 

Female share  0.7209 0.2965 0.5257 -0.4099 

 (1.91) (0.55) (1.40) (1.10) 

Male share -0.2960 -0.0292 -0.3693 0.3588 

 (1.95) (0.18) (2.51)* (2.73)** 

Age 0.0173 0.1353 -0.2015 0.1221 

 (0.38) (1.57) (4.81)** (2.44)* 

Age squared -0.0007 -0.0024 0.0022 -0.0009 

 (1.08) (1.95) (4.12)** (1.41) 

No. individuals in hh aged 0 - 9yr 0.1371 0.0392 -0.0851 -0.3071 

 (1.87) (0.32) (1.14) (2.84)** 

No. individuals in hh aged 10 - 17 0.0107 0.3682 0.0134 -0.3061 

 (0.18) (3.87)** (0.22) (3.55)** 

No. females in hh aged 18 - 59 -0.2593 -0.1243 0.2809 -0.2052 

 (2.94)** (0.80) (3.08)** (1.69) 

No. males in hh aged 18 - 59 0.0110 0.0626 0.0582 -0.0613 

 (0.18) (0.55) (0.92) (0.69) 
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Variable Poor → 

Poor 

Poor → 

Non-Poor 

Non-Poor 

→ Poor 

Non-Poor → 

Non-Poor 

No. individuals in hh aged ≥ 60 -0.0094 0.3768 0.2018 -0.7654 

 (0.09) (2.08)* (1.81) (4.59)** 

Married -0.3319 0.6301 0.3902 0.2177 

 (1.96)* (1.35) (2.06)* (1.00) 

Dependency share 0.1595 -0.0608 -0.0781 -0.1760 

 (1.78) (0.24) (0.80) (0.95) 

No. indi. with industry occupation -0.0663 -0.0238 -0.0393 -0.0064 

 (0.84) (0.18) (0.52) (0.07) 

Off-farmer enterprise -0.5538 1.1121 -0.2972 0.7329 

 (4.85)** (5.54)** (2.60)** (5.33)** 

Large ruminants 0.1389 0.5761 -0.0264 -0.4097 

 (0.66) (1.64) (0.12) (1.32) 

Small ruminants 0.0033 -0.2432 0.2214 0.2423 

 (0.03) (1.06) (2.09)* (1.62) 

Poultry 0.0540 -0.4945 0.1354 0.1210 

 (0.54) (2.44)* (1.36) (0.90) 

Agriculture land 0.0270 0.0715 -0.0105 0.0941 

 (1.17) (1.41) (0.45) (3.30)** 

Distance to road network 0.0026 -0.0015 -0.0154 -0.0002 

 (0.46) (0.13) (2.59)** (0.02) 

Distance to agricultural market 0.0163 -0.0031 -0.0059 0.0101 

 (4.12)** (0.40) (1.58) (1.81) 

Distance to district market -0.0095 -0.0034 0.0105 -0.0050 

 (2.34)* (0.53) (3.16)** (1.02) 

Drought  0.1268 -0.3311 0.0203 -0.0142 

 (4.23)** (11.60) (9.20)** (0.10) 

Floods 0.3578 -0.3810 0.1615 0.1204 

 (2.97)** (2.33)* (3.96)** (0.50) 

Crop pest infestation -0.0477 -0.6186 0.4342 -0.5892 

 (0.27) (1.98)* (2.30)* (2.29)* 

Livestock diseases 0.0087 -0.6549 0.1796 -0.2744 

 (0.05) (2.76)** (0.99) (1.06) 

Irregular rainfall 0.2431 0.0727 0.0833 -0.4528 

 (2.21)* (0.35) (3.77)** (3.17)** 

Constant -0.7376 1.6468 2.4002 -2.8560 

 (1.04) (0.01) (3.46)** (3.08)** 

Rho21 0.0343    

 (2.22)*    

Rho 31 0.8719    

 (10.17)**    

Rho 41 0.1107    

 (10.11)**    
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Variable Poor → 

Poor 

Poor → 

Non-Poor 

Non-Poor 

→ Poor 

Non-Poor → 

Non-Poor 

Rho 32 0.0337    

 (1.29)*    

Rho 42 0.2958    

 (3.05)**    

Rho 43 0.4160    

 (3.75)**    

Model Wald Chi-square 592**    

Rho Chi-square 199.57**    

N 1,038    

* p<0.05; ** p<0.01, Absolute t-statistics in parenthesis 

 

3.5 Conclusions and Recommendations       

The chapter has examined the farmers' vulnerability to expected poverty under climate-

induced stresses in Malawi. Specifically, the study sought to: i) Quantify the magnitude of 

climate stress-induced vulnerability to poverty among farming households; ii) quantify the 

effects of ex-ante climate stress-induced vulnerability on ex-post poverty and; iii) To 

quantify the relative effects of climate-related stresses on poverty transition. The study used 

a panel version of Living Standards Measurement Survey data collected over the period of 

2010 to 2016 in Malawi.  

 

Using a vulnerability threshold of 0.5, 47% of the farmers were vulnerable to future climate 

stresses in 2013. In 2013, the number of vulnerable farmers to 2016 climate-related stresses 

increased to 58%. Further analysis to check the vulnerability of farmers to long-run shocks 

(in 2016) shows that such vulnerability is lower and different from the vulnerability in 2013 

to 2016 climate-related shocks. The implication is that current vulnerability will be 

associated strongly with short-run climate stresses and less so with the long-run climate-

related chocks. 
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This chapter has also examined the determinants of poverty using a multilevel mixed-

effects probit. In the result, I find that there is a significant linkage between ex-ante 

vulnerability and ex-post poverty. Vulnerability increases the probability of actual poverty 

in the short run. The effects of vulnerability on actual poverty lessen with time in the long 

run. Similarly, climate-related stresses worsened the welfare of farming households. 

Poverty was accelerated by droughts, floods and irregular rainfall. Droughts had the 

greatest impact on farmers welfare loss, followed by floods. The finding from this study 

has shown that there is a statistically significant correlation of the error terms across various 

poverty transition equations. This implies that the current poverty outcome is dependent on 

the previous state of poverty of a farmer. As such previous studies that have used 

multinomial categorial models risked obtaining biased estimates. Using the multivariate 

probit model that takes the previous state of poverty endogenously to correct for flaws of 

previous studies, the study finds that vulnerability is a sharp predictor of poverty 

persistency and entry or exit of poverty. Secondly, Climate-related stresses played an 

important role in farmers transition across poverty states between time periods.  

 

The study underscores the importance the livestock in buffering against poverty through 

serving a safety net. This suggests that the inclusion of livestock in the shaping of climate 

management policies for farmers is crucial. Sustainable livestock promotion programs like 

livestock pass-on schemes can help to reach many farmers at low cost in the long run while 

mitigating the impacts of climate-related stresses on poverty outcomes—small livestock 

like poultry act as the best safety net, but the resulting welfare growth opportunities thin. 
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Large livestock provides both a safety net and growth opportunities. However, the 

promotion of livestock should go concurrently with support of access to and function of the 

livestock markets. Secondly, although the rural economy is highly dependent on 

agriculture, switching sectors may not be possible for developing economies. However, 

diversification into off-farm income-generating activities offers prospects for poverty 

reduction and growth. 
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Appendix  

Appendix A3.1: Test for Multicollinearity in 2013 Consumption Model 

Variable Tolerance VIF 

Square 

root VIF  

Eigen 

values 

Condition 

Index 

Household size 0.746 1.341 1.158 1.241 1.000 

Literacy level 0.773 1.293 1.137 0.854 0.829 

Schooling years 0.733 1.365 1.168 0.803 0.804 

Share of females 0.448 2.230 1.493 0.715 0.759 

Age of farmer 0.287 3.481 1.866 0.625 0.709 

Age squared 0.320 3.122 1.767 0.433 0.591 

Married 0.789 1.268 1.126 0.400 0.568 

Dependency Ratio 0.427 2.341 1.530 0.378 0.551 

Female share squared 0.480 2.082 1.443 0.304 0.495 

Off-farm enterprize 0.513 1.949 1.396 0.183 0.384 

Own Livestock 0.718 1.392 1.180 0.163 0.363 

Drought 0.441 2.268 1.506 0.091 0.271 

Floods 0.945 1.058 1.029 0.753 0.779 

Crop pests 0.705 1.418 1.191 0.201 0.403 

Livestock disease 0.736 1.360 1.166 0.414 0.578 

Irregular rains 0.864 1.158 1.076 0.259 0.457 

 

Appendix A3.2: Test for Multicollinearity in 2016 Consumption Model 

Variable Tolerance VIF 

Square 

root VIF 

Eigen 

values 

Condition 

Index 

Household size 0.798 1.25 1.1196 1.730 1.000 

Literacy level 0.780 1.28 1.1321 0.755 0.660 

Schooling years 0.716 1.40 1.1819 0.686 0.630 

Share of females 0.380 2.63 1.6221 0.610 0.594 

Age of farmer 0.259 3.86 1.9636 0.528 0.553 

Age squared 0.289 3.46 1.8610 0.470 0.521 

Married 0.835 1.20 1.0944 0.339 0.443 

Dependency Ratio 0.477 2.10 1.4483 0.309 0.422 

Female share squared 0.480 2.08 1.4432 0.267 0.393 

Off-farm enterprize 0.694 1.44 1.2004 0.176 0.319 

Own Livestock 0.940 1.06 1.0313 0.135 0.279 

Drought 0.838 1.19 1.0924 0.083 0.219 

Floods 0.731 1.37 1.1699 0.751 0.659 

Crop pests 0.558 1.79 1.3388 0.187 0.328 

Livestock disease 0.600 1.67 1.2906 0.964 0.746 

Irregular rains 0.446 2.24 1.4973 0.021 0.111 
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Appendix A3.3: Test for Multicollinearity in 2013 Poverty Model 

 Tolerance VIF 

Square 

Root 

VIF Eigenvalue 

Condition 

Index 

Vulnerability in 2010 0.568 1.76 1.33 7.638 1.000 

Household size 0.329 3.04 1.74 1.403 2.333 

Years of Schooling 0.144 6.95 2.64 1.155 2.572 

Farmer’s age 0.253 3.96 1.99 1.063 2.680 

Farmer’s age squared 0.762 1.31 1.15 1.012 2.748 

Dependency share 0.128 7.81 2.80 0.801 3.087 

No. individuals in hh aged 0 - 9yr 0.721 1.39 1.18 0.761 3.167 

No. individuals in hh aged 10 - 17 0.214 4.67 2.16 0.666 3.387 

No. females in hh aged 18 - 59 0.416 2.40 1.55 0.597 3.577 

No. males in hh aged 18 - 59 0.268 3.73 1.93 0.580 3.629 

No. individuals in hh aged ≥ 60 0.452 2.21 1.49 0.457 4.087 

No. individuals with industry 

occupation 

0.491 2.04 1.43 0.429 4.218 

Large ruminants livestock (0/1) 0.852 1.17 1.08 0.401 4.365 

Small ruminants livestock (0/1) 0.516 1.94 1.39 0.362 4.592 

Poultry (0/1) 0.404 2.48 1.57 0.349 4.681 

Off-farm enterprise 0.697 1.43 1.20 0.319 4.893 

Safety nets 0.173 5.79 2.41 0.271 5.305 

Drought (0/1) 0.498 2.01 1.42 0.192 6.308 

Floods (0/1) 0.762 1.31 1.15 0.144 7.288 

Crop pest infestation (0/1) 0.620 1.61 1.27 0.115 8.143 

Livestock disease infestation (0/1) 0.553 1.81 1.35 0.101 8.705 

Irregular rains (0/1) 0.406 2.46 1.57 0.075 10.068 

Distance to road network 0.436 2.29 1.51 0.061 11.146 

Distance to agricultural market 0.157 6.35 2.52 0.027 16.667 

Distance to district market 0.181 5.54 2.35 0.018 20.746 

Crop diversification 0.057 17.49 4.18 0.002 70.964 
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Appendix A3.4: Test for Multicollinearity in 2016 Poverty Model 

Variable  Tolerance VIF 

Square 

Root 

VIF Eigenvalue 

Condition 

Index 

Vulnerability in 2010 0.649 1.540 1.24 15.738 1.000 

Vulnerability in 2013 0.354 2.824 1.68 1.788 2.967 

Household size 0.460 2.176 1.48 1.288 3.495 

Years of Schooling 0.151 6.615 2.57 1.033 3.904 

Farmer’s age 0.486 2.058 1.43 0.847 4.312 

Farmer’s age squared 0.222 4.514 2.12 0.738 4.619 

Dependency share 0.158 6.324 2.51 0.713 4.699 

No. individuals in hh aged 0 - 9yr 0.118 8.502 2.92 0.570 5.254 

No. individuals in hh aged 10 - 17 0.277 3.609 1.90 0.532 5.441 

No. females in hh aged 18 - 59 0.122 8.174 2.86 0.482 5.714 

No. males in hh aged 18 - 59 0.157 6.370 2.52 0.459 5.854 

No. individuals in hh aged ≥ 60 0.635 1.574 1.25 0.353 6.679 

No. individuals with industry 

occupation 

0.450 2.221 

1.49 

0.337 6.834 

Large ruminants livestock (0/1) 0.818 1.223 1.11 0.326 6.953 

Small ruminants livestock (0/1) 0.419 2.385 1.54 0.318 7.040 

Poultry (0/1) 0.319 3.139 1.77 0.277 7.536 

Off-farm enterprise 0.722 1.385 1.18 0.259 7.796 

Safety nets 0.181 5.521 2.35 0.186 9.202 

Drought (0/1) 0.471 2.122 1.46 0.175 9.473 

Floods (0/1) 0.595 1.680 1.30 0.136 10.740 

Crop pest infestation (0/1) 0.446 2.241 1.50 0.123 11.293 

Livestock disease infestation (0/1) 0.465 2.149 1.47 0.113 11.802 

Irregular rains (0/1) 0.291 3.436 1.85 0.097 12.724 

Distance to road network 0.480 2.084 1.44 0.095 12.890 

Distance to agricultural market 0.139 7.186 2.68 0.084 13.716 

Distance to district market 0.187 5.336 2.31 0.078 14.191 

Crop diversification 0.066 15.050 3.88 0.006 51.363 
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Appendix A3.5: MV Probit for Determinants of Poverty Transition (2013 – 2016) 

 Poor → 

Poor 

Poor → 

Non-Poor 

Non-Poor 

→ Poor 

Non-Poor 

→ Non-

Poor 

VEP 3.7442 -5.0020 1.2535 -7.4069 

 (7.31)** (6.55)** (3.46)** (12.10)** 

Household hold size 0.1253 -0.1329 -0.0661 -0.1035 

 (3.82)** (1.89) (1.56) (2.06)* 

Literacy 0.0239 -0.4291 -0.1558 -0.4773 

 (0.18) (1.52) (1.07) (2.37)* 

Years of Schooling -0.0532 -0.0190 0.0031 0.0620 

 (3.48)** (0.77) (0.21) (4.04)** 

Female share  0.1105 -0.3274 0.3900 -0.2026 

 (4.58)** (0.96) (2.07)* (0.99) 

Male share 0.0048 -0.0657 0.0571 0.0129 

 (0.10) (0.88) (1.41) (0.29) 

Age 0.0097 0.0563 -0.1076 0.1012 

 (0.25) (0.68) (2.55)* (2.32)* 

Age squared 0.0004 -0.0013 0.0012 -0.0009 

 (5.83)** (1.15) (2.18)* (1.62) 

No. individuals in hh aged 0 - 

9yr 

0.0085 -0.0585 0.0824 -0.0147 

 (0.19) (0.66) (1.54) (0.25) 

No. individuals in hh aged 10 - 

17 

0.0239 0.1815 -0.0508 -0.1136 

 (0.54) (2.64)** (1.03) (1.97)* 

No. females in hh aged 18 - 59 0.1351 0.0028 0.1898 -0.1635 

 (2.00)* (0.02) (2.57)* (1.90) 

No. males in hh aged 18 - 59 -0.0940 0.1516 -0.0067 0.0165 

 (6.68)** (5.78)** (9.12)** (0.27) 

No. individuals in hh aged ≥ 60 -0.1046 0.0557 0.0093 -0.0290 

 (1.18) (0.95) (0.26) (0.62) 

Married 0.0821 0.5014 0.1280 -0.1925 

 (0.54) (1.17) (0.75) (1.07) 

Dependency share 0.3337 -0.0758 0.0504 0.0415 

 (4.51)** (0.34) (0.51) (0.32) 

No. indi. with industry 

occupation 

-0.0850 -0.0251 -0.0666 0.0387 

 (1.22) (0.27) (1.02) (0.60) 

Off-farmer enterprise -0.3477 0.1254 0.0513 0.0736 

 (3.23)** (0.73) (0.48) (0.61) 

Large ruminants -0.2195 0.0214 -0.1331 0.4483 

 (1.11) (0.07) (0.64) (1.73) 

Small ruminants -0.0809 0.0202 -0.1859 0.1365 
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 Poor → 

Poor 

Poor → 

Non-Poor 

Non-Poor 

→ Poor 

Non-Poor 

→ Non-

Poor 

 (0.82) (0.11) (1.87) (1.17) 

Poultry -0.0901 0.3504 -0.1326 0.0093 

 (0.93) (2.07)* (1.33) (0.08) 

Agriculture land -0.0175 0.0410 -0.0179 0.0288 

 (4.80)** (5.17)** (0.72) (31.18)** 

Distance to road network 0.0052 -0.0067 -0.0126 -0.0051 

 (0.97) (0.62) (2.13)* (0.73) 

Distance to agricultural market 0.0147 -0.0083 0.0041 -0.0015 

 (3.78)** (1.17) (1.05) (0.32) 

Distance to district market -0.0076 0.0017 0.0082 -0.0027 

 (2.04)* (0.30) (2.43)* (0.64) 

Drought  0.1356 -0.1715 0.0402 -0.0449 

 (5.37)** (7.94)** (4.38)** (0.37) 

Floods 0.3980 -0.3477 0.1888 -0.0561 

 (2.40)* (7.40)** (1.14) (6.30)** 

Crop pest infestation 0.0913 -0.7259 -0.3246 0-.6452 

 (0.53) (2.62)** (1.72) (3.31)** 

Livestock diseases 0.0445 -0.6940 0.1442 -0.2934 

 (0.26) (2.08)* (0.80) (8.49)** 

Irregular rainfall 0.2450 -0.1810 0.0555 -0.2676 

 (2.33)* (5.01)** (0.52) (2.81)** 

Constant -1.6325 -1.6323 1.0247 1.4267 

 (2.68)** (1.14) (1.39) (1.54) 

Rho21 0.2263    

 (1.94)    

Rho 31 0.6727    

 (8.96)**    

Rho 41 0.3409    

 (3.88)**    

Rho 32 0.0107    

 (0.12)    

Rho 42 0.1708    

 (1.83)    

Rho 43 0.2371    

 (3.12)**    

Model Wald Chi-square 406.95**    

Rho Chi-square 222.13**    

N 1,021    

* p<0.05; ** p<0.01 
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Appendix A3.6: Derivation of Vulnerability to Expected poverty in R Software 
 

#       VULNERABILITY OF SMALLHOLDER FARMERS TO CLIMATE CHANGE 

#    Assa M. Maganga 

#      University of Malawi 

#      Department of Economics 

#       Date Last Modified: 5 April 2019 

# -------------------------------------------------------------- 

#DERIVING VULNERABILITY TO COVARIATE SHOCKS SCORES.  

 

#FITTING THE MULTILEVEL MODEL   

 #step 1: calculate ex ante mean  

    Model_1 <- lme(fixed = lnC ~ hhsize_10 +  Literacy_10  +  

Schooling_10   +  femaleshare_10  +  age_10  +  age_square_10  +  

married_10  +  depratio_10  +  femaleshare2_10  +  enterprize_10 

+   Livestock_10 +  drought_13  +  floods_13  +  croppests_13  +  

livestockdisea_13  +  irreg_rains_13, random=~1|district/HHno,  

correlation = corAR1(),   data = VEP, na.action=na.exclude) 

 

#summary(Model_1) 

 

#step2: calculate ex ante variance 

  VEP$yhat   <- fitted(Model_1) 

  VEP$res   <- resid(Model_1) 

  VEP$lnres2[!is.na(VEP$res)] < log((VEP$res[!is.na(VEP$res)])^2) 

  Model_1a <- lme(fixed = lnres2 ~ hhsize_10 +  Literacy_10  +  

Schooling_10   +  femaleshare_10  +  age_10  +  age_square_10  +  

married_10  +  depratio_10  +  femaleshare2_10  +  enterprize_10 

+   Livestock_10 +  drought_13  +  floods_13  +  croppests_13  +  
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livestockdisea_13  +  irreg_rains_13, random=~1|district/HHno,  

correlation = corAR1(),   data = VEP, na.action=na.exclude) 

  

VEP$plnres2 <- fitted(Model_1a) 

  VEP$eplnres2 <- exp(VEP$plnres2)  

  VEP$sd2 <- sd(!is.na(VEP$eplnres2)) 

   

  #   step 3: calculate Score   

VEP$z1 <- ((VEP$z -VEP$yhat) /VEP$sd2) # Z-score 

VEP$vep <-  pnorm(VEP$z1) 

summary(VEP$vep2) 
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CHAPTER 4 

WILLINGNESS TO PAY FOR INDEX INSURANCE FOR STAPLE FOOD 

CROP 

 

4.1 Introduction 

4.1.1 Background 

Crop agriculture has a heavy reliance on weather and is negatively impacted by periodic 

episodes of droughts and floods.  These have an inverse relationship with farm output 

(Akhtar, et al., 2019). The presence of droughts and floods will trap agriculture out in a 

vicious cycle: These shocks will reduce farm output and have a negative effect on the 

economic lives of farming households. As a result, these farmers will migrate to urban 

areas to recover their fragile livelihoods. With urbanization, farm output is expected to 

remain low in the subsequent periods (Hongo, 2010). 

 

Uncertainty in climate is associated with risks that expose farmers to high 

vulnerabilities, affecting their livelihood. This risk emanates from weather-related 

extreme events (Hellmuth, et al., 2007). Thus, weather outcomes are either below or 

above the normal threshold. As such, agriculture risk management is becoming a 

contemporary issue as variability in climate is predicted to worsen in the future, which 

will pose further increasing uncertainties on agriculture output and performance of the 

agriculture sector in general (Antón, et al., 2013). Extreme climate events obstruct the 

economic lives of the farming households, whose livelihoods are agriculture-based, and 
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retards progress towards the achievement of the Sustainable Development Goals. These 

arise because most of African Agriculture is dependent on rain-fed moisture, and in 

Sub-Saharan Africa (SSA) in particular, agriculture is one of the most important sectors 

as it contributes about 29 percent to Gross Domestic Product and provides employment 

to 86 percent of the population (Nnadi, et al., 2019; World Bank, 2008). This will make 

risk management to remain a relevant option as it provides farmers with a buffer in the 

face of climate-related unanticipated extreme events, thereby strengthening the 

resilience of the agriculture sector (Someshwar, 2008). 

 

It is believed that the effects of climate-related extreme events on the economic lives of 

farming households have intensified in recent years, most significantly due to global 

warming (Barnett, et al., 2007). In certain parts of Africa, research findings have shown 

that countries have already experienced a persistent fall in GDP by 1 to 3 percent yearly 

as a result of droughts and floods. There are also predictions that there will be further 

losses of 1 to 2 percent of GDP in the short terms and this will worsen to a range of 5 

to 10 percent by 2030 (Smith, et al., 2012), meriting the need for a plausible solution 

that could cushion farmers in the face of impeding climate-related risks. 

 

Of the climate-related shocks, those that have been commonly reported in African 

Context include droughts and floods. Cole et al. (2013) note that about 89% of the 

surveyed households in developing countries reported that variability in rainfall was the 

most important weather risk they were facing. Africa, in particular, based on both 

farmers reports and empirical evidence, rainfall shocks was the most worrying weather 

shock that farmers faced in Ethiopia (Dercon, et al., 2011). A review of the International 

Disaster Database for the past four decades shows a historical record of 1000 natural 
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disasters in Africa affecting around 330 million individuals. Of these disasters, although 

floods were frequent, it happened that droughts affected 83% often the victims and 

resulted in 40% of the registered economic damages (EMDAT, 2010). With time, these 

events tend to intensify in frequency (Dilley, et al., 2005). With exposure to these 

shocks, farmers to find alternatives that they can use to manage the aftermath of these 

shocks.  

 

In developing countries, weather index crop insurance has emerged as one potential 

sustainable risk management strategy for farmers that transfers climate triggered risks 

from farmers to insurance brokers (Barnett, et al., 2007). It is a better option than 

traditional crop insurance because of its underlying challenges with paying indemnities 

according to the actual losses experienced by the farmer. Index insurance reduces the 

risk of adverse selection in which farmers are inclined to subscribe to insurance if they 

are at high risk. Farmers subscribe to an insurance based on terms, conditions and 

payouts that are uniform for all farmers in a designated location, hence, mitigating the 

problem of adverse selection by insurance brokers. The second advantage is that it 

reduces the problem of moral hazard. In traditional insurance, farmers may influence 

payouts by altering their farm management behaviour into one that can induce losses in 

order to trigger a payout. Whereas, with index insurance, payouts are dependent on 

variables that are exogenous to the farmers, such as weather outcomes (World Bank, 

2011). Therefore, the provision of index-based crop insurance to farmers is a sustainable 

risk management strategy that can cushion or offer long-run income growth for farmers 

in low-income countries (Cole, et al., 2013). 
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Poor and vulnerable farmers in developing countries face income risk due to climate-

related shocks. The concept of risk management in agriculture is not new among 

farmers. Farmers already engage in a number of risk mitigation strategies that tend to 

smoothen their consumption path in order to minimize the effects of the shocks. These 

could include livelihood diversification, sale of assets, draws on savings, among others 

(Dercon, 2002). The effectiveness of these strategies is depended on the scale of the 

risks. Without a doubt, these strategies are effective for idiosyncratic shocks. However, 

when shocks are covariate in nature – affecting the entire community, some of the 

strategies, especially those that rely on the proper functioning of community markets, 

tend to be no longer effective. Studies have found that the impact of idiosyncratic shocks 

on consumption is not significant suggesting that there is usually intra-household 

resource distribution when one household is stricken by such shocks. On the other hand, 

covariate shocks are mostly correlated with consumption decay (Harrower, et al., 2005). 

For such shocks, a formal agriculture insurance policy for farmers becomes more 

plausible to manage such agricultural risks (Dercon, 2002; Mechler, et al., 2006). 

Designing an insurance policy that meets the needs of farmers in times of climate-

related covariate shocks is a step forward toward the management of agricultural 

production risks (Clarke, et al., 2012). 

 

4.1.2 Problem Statement and justification 

Weather index insurance, being a new concept in Malawi, has not received much 

attention from researchers at the country scale. It is not surprising that previous studies 

that have had to do with the management of climate risk in agriculture have mostly been 

to do with adaptation (preventive measures) of impact mitigating technologies such as 

conservation agriculture technologies and others (Chidanti-Malunga, 2011; 
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Pangapanga, et al., 2012; Assa, et al., 2017). As efforts to help farmers to manage 

climate risks through subscription to weather index insurance are in infancy, an initial 

understanding of the farmers’ willingness to pay a premium for the insurance services 

is a first step to shape proper packaging of the weather index policy. To the author’s 

knowledge, there is no study to date that has examined the demand side of weather 

index insurance in Malawi. The information will be much needed by the insurance 

companies and the Ministry of Agriculture in shaping the direction of the agriculture 

insurance market in Malawi. As such, this study uses cross-sectional data from 10 

districts to employ contingent valuation methods to weather index insurance potential 

in Malawi.  

 

4.1.3 Objective of the study 

The general objective of this study is to generate the demand side information from 

farmers who are the major victims of climate-related shocks.  Thus, the prime concern 

of this study is to elicit farmers’ willingness to pay for weather index insurance in 

Malawi for maize crops.   The specific objectives of the study are:  

 To identify the determinants of the willingness of farmers to pay for Weather 

Index Insurance  

 To estimate the mean Willingness to Pay for weather index insurance. 

 To compare Willingness to pay estimates from parametric and non-parametric 

methods. 

 To develop a framework for designing weather index insurance 
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4.2 Literature Review 

This section provides the background to risk management and the concept of insurance. 

In turn, it presents a review of the theoretical construct of the contingent valuation 

methods.  

 

4.2.1 Risk and risk management 

Risk can be defined as the potential damage for loss, damage as a result of the interplay 

among vulnerability, exposure to hazards and the probability of its occurrence (IPCC, 

2018). In agriculture, farmers are faced with output, price risks which in turn affect their 

incomes from time to time. Teshome and Bogale (2015) have characterized risks into 

three; 1) those that affect households, 2) those that affect the community, 3) those that 

affect region and nation. The individual risk could range from illness, loss of family 

members, loss of non-farm income source and others. Community or regions risks could 

include floods and droughts. In agriculture, these risks are somehow intertwined. 

Community risks like droughts or floods could affect agriculture output and, in turn, 

alter region prices for some communities (Cervantes-Godoy, et al., 2013). 

 

With missing markets for contract pricing and crop insurance in developing countries 

until the recent past, farmers have been engaging in self-insurance so as to minimize the 

negative effects of shocks on their livelihood (Davies, 1993). Some of the effects of the 

shocks and the shocks themselves are not strange to farmers. Farmers can anticipant and 

predict certain shock occurrences and at the same time engage in ex-ante risk 

management strategies to minimize the effects of those shocks or engage in ex-post risk 

coping strategies to smoothen their consumption. Some of the risk coping strategies 

could have a lasting impact on the lives of the farmers (Machetta, 2011; Kwadzo, et al., 
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2013). These could include sell of household assets, reducing food intake and school 

dropout of children. Reduction in food intake could have a negative long-run effect on 

a child’s cognitive ability (Jones, et al., 2009). Dropping out of school could also affect 

the supply of skilled human capital in the future. Deciphering from these effects, it can 

be depicted self-insurance might not be the best option for the households and the nation 

in the long term. This makes the presence of crop insurance products more relevant to 

the farming society if farmers are to remain better off in times of weather shocks.   

 

4.2.2 Agriculture Insurance  

Agriculture insurance builds on the same principle as other forms of insurance like 

health insurance or property insurance. The key principle is that it entails paying a 

regular sum of money to an insurance agency in return for an irregular payback that 

happens when there is unforeseen loss (Kwadzo, et al., 2013). Subscription to an 

insurance policy does not reduce the likelihood of a shock from happening. However, 

what it does is smoothen the economic stand of the farmer should they experience a 

shock (Danso-Abbeam, et al., 2014). This empowers the farmers to manage the shocks 

effectively. Agriculture insurance can largely be categorized into two: 1) indemnity-

based insurance and 2) index-based insurance. 

 

4.2.2.1 The Indemnity-based crop insurance 

Indemnity-based crop insurance is a type that covers individual farmers from a given 

hazard. Its focus is on the actual losses such that a farmer will claim the actual loss 

experience. The insurance can cover either one type of hazard or several hazards, 

depending on what is specified in the contractual agreement. Any loss that is triggered 

by any hazard which is specified in the agreement qualifies for a farmer to file a claim. 
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The total premium for the farmer is calculated based on the total production cost or the 

estimated revenue from production (Tsikirayi, et al., 2013). 

 

Indemnity-based insurance is challenged by a number of weakness that might affect its 

sustainability and effectiveness, especially when it is to do with cover for small scale 

farmers (Newbery, et al., 1983). These challenges include moral hazard and adverse 

selection, which in turn results increase costs of administration as the insurance 

providers try to bridge the gap of asymmetric information. In moral hazard, insured 

farmers may have less incentive to work hard as they would without insurance, hence, 

increasing the chances of losses. Alternatively, insured farmers may declare losses that 

could be costly for the insurance agent to verify. With regard to adverse selection, fewer 

risk farmers may not bother to subscript for an insurance policy, while high-risk farmers 

will crowd out the insurance policy. As such, on average increases the probability of 

losses to the insurance provider. This will result in a failure of the insurance market with 

time, as Akerlof puts it as the market for lemons (Akerlof, 1970). These challenges 

provide evidence that the traditional crop insurance in developing countries will not 

only be ineffective but will also kill the insurance markets. This seeks a modified type 

of insurance that can ably handle these kinds of challenges.  

 

4.2.2.2 Index-based crop insurance 

Index-based insurance is a step ahead of traditional insurance. It can be contraction at 

individual, community or regional level. One of its distinguishing characteristics is that 

it disconnects actual individual losses from the payout. Instead of using actual losses, it 

uses an index that is exogenous to the farmer’s behaviour. When certain variables 

exceed certain agreed thresholds, the payout is triggered. For example, in Malawi, they 
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have used rainfall amount, in Peru, they have used location area yield data, and in India, 

they have used mortality rate of livestock (ILO, 2011; Cole, et al., 2012). The index 

used data (droughts, floods) that is usually compiled at weather stations for a given 

community. The major drawback of this policy, from the farmers perspective, is that a 

farmer as an individual may have losses at his farmer by may not file a claim if the 

index did not exceed the agreed threshold. This is why, in the design of the index, the 

yield should be highly correlated with the index used.  

 

4.2.1 Economic valuation of non-market goods 

Pricing goods and services that are currently not offered on the market is generally 

imagined as they have no economic value. Over time, beyond neoclassical economics, 

there has been development and evolution of techniques that can be used to peg prices 

or economic value on goods or services which cannot currently be accessed on the 

market by using stated preference (Hoyos, et al., 2010). In this regard, economic value 

is the opportunity cost of forgoing other goods or services in order to access the 

good/service that is not currently offered on the market. This money metric welfare 

representation is constructed using Willing to Pay (WTP) in order to minimize losses 

that are incurred as a result of changing climate. This willingness to pay is an extremum 

that an individual is willing to pay, in our case, crop insurance subscription, in order to 

maintain their level of welfare despite the occurrence of floods and droughts (Douglas, 

et al., 1998). Estimation of economic value through valuation, therefore, enables us to 

determine the marginal returns of non-market goods to the individual’s utility. 

 

Valuation of non-market goods is not an end product but rather a tool or methodology 

that aids decision making in the provision of related goods and services. It is usually 
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amalgamated with financial instruments within a given institution setting to derive the 

economic value on non-market goods (Jean-Michael, 2011). To derive this economic 

value, the decomposition of the Total Economic Value (TEV) approach is used. This is 

based on the premise that the economic value of a good or service has different 

components of values depending on its attributes. These components of value are based 

on whether the value can directly be measured through tangibly deriving benefits from 

the product or indirectly. Thus, Total Economic Value can be decomposed into Direct 

Use Value, Indirect Use Value, and Non-use.  

 

Direct use value is a value of a stream of benefits that are realized by directly consuming 

the good. Indirect use-value is a stream of benefits that accrual from consumption of the 

services from a given good. Non-use values are twofold: Option and existence values. 

The option value is an intrinsic benefit enjoyed by individuals by deciding not to 

consume the good today but keep it for the future. Existence value is the value attached 

to a good by an individual who likes to enjoy seeing the existence of that good without 

directly deriving benefit from it (Zhang, et al., 2010). Figure 1 illustrates the 

decomposition of these values.  
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Source: Adapted from Edward et al., (1997) 

Figure 4. 1: Conceptual framework for understanding the economic valuation of 

non-market goods 

 

The non-use values pose a greater difficulty in quantification. Non-use values are 

intrinsic; they may not relate to either current or future consumption by individuals in 

question. These are based on subjective value judgement (Edward, et al., 1997).  

 

The above approach has mostly been used in empirical environmental economics to 

quantify the cost of providing a given quality of an environmental good. In the analysis, 

the focus is usually on how a change in the attribute or quality of an environmental good 

would transmit changes into the utility of an individual. i.e gains or losses in welfare of 

an individual. The assessment is driven by two key questions: 1). How much is an 

individual willing to give up on other goods in order to avert damages caused by 

environmental or climate changes; 2) How much better off will the benefiting individual 

be if a non-market good was provided to enhance averting damages caused by the 
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environmental or climate change. These are the two questions that this current study 

seeks to respond to. The former relates to the quantification of the affordable price for 

weather index crop insurance. The latter relates to the welfare changes as a result of 

subscribing to weather index insurance. 

 

Valuation of non-market goods has its roots in the field of welfare economics, building 

on the concepts of consumer and producer surplus to aid efficient pricing of the 

provision of non-market goods (Douglas, et al., 1998), in this case, price of insurance 

products to minimize damages caused by floods and droughts.  

 

In order to evaluate the money metric welfare shifts due to worsening climate events, 

with the goal of maintaining a fixed level of welfare during pre and post-disaster 

periods, two measures have been suggested in literature; these are equivalent variation 

and compensated variation (Latham, 1999). Equivalent variation is the amount of 

money that must be adjusted from an individual in order to maintain their initial level 

of utility (welfare) regardless of the presence of the climate shocks. If the policy change 

results in an individual’s improvement, then the measure is called compensated 

variation (Nyborg, 1996).  

 

For a proposed provision of insurance products that increases resilience of an 

individual’s welfare, compensation variations could define the income change 

necessary to maintain the individual’s initial level of utility throughout episodes of 

droughts and floods. This will be the maximum amount from his income that an 

individual will be ready to give up in order to maintain his level of welfare; in 

environmental economics, this amount is called Willingness to Pay (WTP). Considering 
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a change in the provision of climate risk management goods from q0 to q1, in which q1 

is a vector of goods that includes crop insurance, compensated variation is given by 

𝑢0(𝑚0 − 𝑊𝑇𝑃, 𝑞1) = 𝑢0(𝑚0, 𝑞0), where u0  is the initial level of utility an individual 

is capable of realizing given that his income is 𝑚0 and climate risk management 

strategies 𝑞0. With the provision of q1,  an individual’s utility does not drop in the face 

of climate shocks. Without taking off any income from the individual, his utility of 

income goes up. As such, to maintain the same level of utility as at the initial, an amount 

equivalent to WTP must be taken away from an individual (Hanemann, et al., 1991; 

Cook, 2011). 

 

By definition, WTP is the amount an individual is willing to pay for the desired level of 

a good or payment to avert the effects of undesirable outcomes of environmental 

changes (Charles 2000). The choice between the use of WTP or Willingness To Accept 

on the rights that are vested by the individual who is concerned. WTP works when the 

person who suffer damage does not have the right to stop it. On the other hand, WTA 

works when the rights are vested in the concerned individual and therefore must be 

compensated for any damage he may suffer. For the insurance products, since we are 

dealing with climate shocks for which rights cannot be applied, and as such, the 

individual does not have rights over nature, WTP is a plausible option (Nyborg, 1996; 

EDIEN, 2002).  Thus, WTP is appropriate for this study and has been highlighted as 

one of the most conservative approaches compared to WTA (Arrow, et al., 1993), it 

avoids over estimation that is common with WTA approaches. 
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4.2.2 Methods in the valuation of non-market Goods 

In a broader spectrum, there are two key methods that are used to derive values for non-

market goods. These include stated preference and revealed preference methods. The 

following sub-sections unpack each of these methods.  

 

4.2.2.1 Revealed Preference 

The theory of revealed preference is traced back in the Samuelson (1948) novel work 

when he was trying to derive a utility function using minimum quantities of goods and 

price information such that the consumer could consistently choose the same 

consumption bundles in line with the original data. Varian (1992) makes a solid 

presentation of the theory of revealed preference. This approach draws statistical 

inference on the actual choices people make in the marketplace. It proceeds from 

observing actual quantities purchased at given prices. There are tw0 commonly used 

methods under this approach: Travel cost methods and hedonic pricing method 

(Adarnowicz, et al., 1994).  

 

4.2.2.1.1 Travel Cost Method 

The travel cost method has been used to establish values of a recreation site accruing 

from environmental amenities. This can take two forms: it can be used to value 

recreation loss from, for instance, closure of beach due to oil spillage, or alternatively, 

recreation gains from a particular improvement in water quality or environmental 

scenery. The economic values established by this method are use-values since it entails 

the elicitation that depends on the observed behaviour of the participants (Cameron, 

1992). The method of travel cost is further categorized into whether the focus is on 

estimating demand for one site or multiple sites (Pokki, et al., 2018). 
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A single-site model is a demand model that estimates the number of trips achieved to a 

given recreation site over a defined period of time. In this demand model, quantity 

demand is the number of trips a person achieved to a recreation site for a given season; 

the price is the total actual cost of travel, cost of time and on-site expenses (Cameron, 

1992; Bockstael, 1994). The general form of the model is  

𝑟 = 𝑓(𝑡𝑐𝑟 , 𝑦, 𝑧) 

Where tcr is the cost of a trip to a recreation site, r is the number of trips, y is the income 

of the person, z is a vector of socio-demographic characteristics. Economic theory 

postulates a negative relationship between the number of trips and the cost of the trip. 

Thus, those individuals living further from the site will report fewer trips than those 

within a close radius of the site (Bertram, et al., 2017). The data on trips costs and the 

number of trips can be used to plot a downward sloping demand curve. The area above 

the actual cost and the choke price will be the consumer surplus or the benefit to the 

individual. Mathematically this is represented as:  

∆𝑤 = ∫ 𝑓(𝑡𝑐𝑟 , 𝑦, 𝑧)𝑑𝑡𝑐𝑟

𝑐ℎ𝑜𝑘𝑒

0

 

Thus, if the recreation site is closed for a given period, the welfare loss to the individual 

would be equivalent to the consumer surplus.  

 

For the multiple-site scenario, the Random Utility Maximization model is the most 

commonly used model (Bockstael, et al., 1989). This model considers a discrete choice 

of a recreation site from an array of different competing sites (Hanemann, 1999). The 

driving factor for the choice of a given site is a set of attributes embodied by the site. A 

revealing choice for a site says much about the trade-off that an individual makes for 
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one site against the other, given varying characteristics of the sites. At times the, 

Random Utility Model is used to model several sites simultaneously.  

 

Given so many sites that a person is faced with to make a decision on which one to go 

to, the choice is moderated by the level utility that can be realized by visiting a site 

(McConnell, 1995). Each site will have its own level of utility, and as a rational 

economic agent, a person will choose to visit a site that will maximize the utility, vi. 

Utility level for each site is a function of the trip cost and the site-specific characteristics 

(Parsons, et al., 2003):  

𝑣𝑖 = 𝛽𝑡𝑐𝑡𝑐𝑖 + 𝛽𝑞𝑞𝑖 + 𝑒𝑖 

Where tc is the cost of visiting site i, q is a vector of characteristics for site i, e is the 

stochastic error component of the model to account for unobserved factors. Trip cost is 

inversely related to the utility of the site. An individual, therefore, seeks to maximize 

given several sites: 

𝑈 =  𝑚𝑎𝑥(𝑣1, 𝑣2, . . . 𝑣𝑖) 

When one of the sites is closed, the loss in welfare to the individual with be the 

difference in utility maximization for before and after closure (McConnell, et al., 1995).  

 

4.2.2.1.2 Hedonic Pricing Method 

Products that are similar in type offered in one market would still face different prices 

because of the level of product differentiation that each one of them has. The hedonic 

pricing method relies on the difference in prices for the differentiated products to derive 

value for a particular attribute of a product (Veronika, et al., 2018). For instance, if two 

products only vary in terms of one aspect, the price differential will reflect the sacrifice 

consumers are willing to make for the additional characteristic that one of the goods 
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has. In this case, the researcher does not directly observe the value the consumer presses 

on the given characteristic, but rather through observing market transactions, and it is 

possible to decipher the value the consumers peg on a characteristic.  

 

Hedonic pricing has been applied in research since Waugh’s (1928) analysis of the 

determinants of asparagus pricing. The application has covered a broad spectrum 

ranging from automobile, health sector, housing and agriculture (Beach, et al., 1993; 

Nimon, et al., 1999; Danzon, et al., 2000). However, the method has gained strong roots 

in the housing industry. 

 

Elicitation with hedonic pricing follows two steps. In the first stage, a hedonic price 

function is estimated. This is estimated as price as a function of product characteristics. 

The coefficient on each characteristic depicts the marginal value or implicit price of that 

characteristic. The first stage is more direct to implement, while the second stage is 

more data demanding and complex.  Rosen’s (1974) novel work was very vital in laying 

the utility theory so as to bridge the link between consumer preference for differentiated 

products and the equilibrium price function in the hedonic model.  

 

Although the revealed preference approach mirrors the actual observed behaviour of the 

implied consumers, it has registered its own shortcomings. First is that the economic 

values are derived from observing consumers behaviour only record use-value. Non-

use values cannot be implied by observing the consumer’s market transactions. Larson 

(1992) tried to challenge this shortfall, but his claims have not received credence in the 

literature on non-market valuation. Second, the revealed preference approach is not able 

to capture the value of environmental change that has not yet been experienced by 
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consumers. This is kind of problematic for policy makers to shape future interventions 

condition on what the quality of the environment will be then. Third, travel cost methods 

are limited to estimated values for a single-day trip, whereas in practice, consumers may 

have several destinations or sites on a single day.  

 

4.2.2.2 Stated Preference  

Stated preference methods fall within a class of surveys that seek to quantify the 

people’s value judgements for products that are difficult to value, using a hypothetical 

market scenario (Grip, et al., 2019). There are two variant methods under stated 

preference that are commonly used: contingent valuation and choice experiment. For a 

while, these methods have been applied to measure preference for products and services 

that cannot be measured directly using revealed preference as observed through market 

transactions. The linking thread in all these methods is that they require setting up a 

hypothetical market through which preference behaviour is analyzed (Boudon, 1996). 

 

4.2.2.2.1 Contingent valuation method 

World Bank (2002) has defined contingent valuation as a method of tagging values on 

goods that are not sold in the market, usually environmental goods and health. This 

valuation method offers individuals questions to make economic decisions of choice for 

a product that the market is not currently offering. The valuation outcome is based on a 

simulated market scenario with which the individual is presented. The advantage of this 

method is that it is able to capture non-use values, unlike other methods. Depending on 

the aspect being studied, contingent valuation elicits an individual’s willingness to pay 

to prevent loss of a certain welfare level or willingness-to-accept to compensation for a 

given level of welfare loss (Abdul-Rahim, 2005). 
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In theory, the method of contingent valuation methods was first pioneered by Wantrup 

(1947) with the aim of modelling non-market good. However, practically the method 

was first applied by Davis (1963), who commissioned a study to estimate the value that 

tourists placed on wilderness zones. The method was not popular until it was applied to 

quantify the effects of Exxon Valdez oil spillage USA in 1989 (Piatt, et al., 1990). 

Although the method began to get popular at that time, it met resistance from other 

researchers, especially when it came to using its findings to shape the policy landscape. 

In 1993, the debate was heated, the National Oceanic and Atmospheric Administration 

commissioned a panel of discussions by renowned economists of the time to establish 

whether the results of the methods could be trusted upon for decision making (Arrow, 

et al., 1993). The key conclusion from the panel of discussion was that the method was 

robust in yielding economic estimates of value that can be trusted, provided that the 

survey is carefully designed and the experimental setting is controlled for (Arrow, et 

al., 1993). 

 

The contingent Valuation technique requires the use of a structured questionnaire as the 

main tool for data collection. The questionnaire is administered to a representative 

random sample from a given population (Geleto, 2011). Three key systematic steps are 

followed:  

 

First, the hypothetical scenario is explained to the respondents to enhance their thorough 

understanding of the product at hand. The interviewer explains to the respondent what 

the product is, its attributes, who is going to pay for it, and by what mode of payment. 

Second, the respondents are given the opportunity to consider the market context of the 
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hypothetical good. In the third step, the respondents critically analyse the market 

scenario and make a statement about their preference for the product by indicating their 

willingness to pay or willingness to accept depending on the good in question (Geleto, 

2011). There are various elicitation methods to arrive at the respondents’ willingness to 

pay or to accept.  

 

Open-ended: In this approach, respondents are asked an open-ended question to state 

their willingness to pay for a product (Finco, et al., 2010). This produces a continuous 

variable of willingness to pay on which various statistical methods can be applied. It 

has several advantages over other elicitation techniques. The method is easy to explain 

and get understood by respondents; the continuous bid provides for easy computation 

of the mean willingness to pay. Finally, the method is efficient in terms of the time taken 

to administer the questionnaire to the respondents (Venkatachalam, 2004). However, 

this method is criticized for being prone to respondent systematic biases (Mitchell, et 

al., 1989).  

 

Single bounded Dichotomous choice: In this method, the respondent is asked to confirm 

if they are willing to pay a predetermined amount of money in a close-ended format. 

This produces a discrete variable with yes or no responses. This requires sophisticated 

statistical computation methods (Bishop, et al., 1980). Although this approach is simple 

to implement, its major short-coming is that it is less efficient and requires a very large 

sample to achieve a given level of precision (Hanemann, 1991). 

 

Double bounded dichotomous choice: This technique was developed by Carson et al.  

(1986) and Hanemann (1984). It results in a dichotomous outcome in a multi-stage 
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format. This is an improvement of the single choice dichotomous choice earlier looked 

at. In the second state, another yes-no question is asked with a higher or a lower bid 

depending on the response to the first bid. The initial bid is iterated among the 

respondents in order to establish the true willingness to pay by respondents. Due to the 

reported statistical efficiency of this method, it has gained more superiority over the 

single dichotomous choice experiment (Cooper, et al., 2002).  However, literature has 

shown that there is usually inconsistency between the first response and the follow-up 

response. The follow-up question usually is not known to the respondent in advance 

and comes as a surprise. Others have argued that it is this surprise that is responsible for 

inconsistent responses (Cooper, et al., 2002). Hanemann et al. (1991) are able to show 

that the method is asymptotically efficient than its counterpart single bounded 

dichotomous choice experiment.  

 

In order to remedy the potential bias associated with the double bounded dichotomous 

technique, (Cooper, et al., 2002), formulated the one- and one-half dichotomous choice 

technique while maintaining the efficiency gains that come with multiple dichotomous 

choice techniques. In the technique, two prices are presented upfront. The exact 

willingness to pay is not known, but it’s believed to lie between the bounds of the two 

prices. One of the two prices is selected at random and presented to the respondent. The 

follow-up question and the second price are only applicable if doing so would be 

consistent with the response of the first question. Through this, it is believed that the 

method eliminates the bias that might emanate from the surprise of a follow-up 

question. However, the methods result in loss of information from the second question 

that is often not asked conditional on the outcome of the first question. For this reason, 

this study adopted the double bounded dichotomous choice experiment.  
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4.2.2.2.2 Choice Experiment 

The discrete choice experiment has become one of the widely used research tools across 

different disciplines of social sciences. It is used in studies that involve studying 

consumer choices of goods that have different sets of attributes (Hanley, et al., 2002). 

The choices consumers make reveal their values that they peg on the attribute 

differential across the goods in question. As these kinds of situations often arise times 

in our lives, many disciplines have adopted these methods of Discrete Choice 

Experiment (DCE).  

 

In DCE, individuals are presented with two or more hypothetical goods, each one of 

which is defined with a different set of attributes. The value which the individual places 

on each set of attributes moderates their choice of one good over the other. Cost attribute 

is usually included in the attribute set, and this allows to elicit the individual willingness 

to pay depending on which attribute set the individual has chosen (Hanley, et al., 1998; 

Louviere, et al., 2000; Bennett, et al., 2001). 

 

In Environmental Economics, DCE has been used to elicit values of resources or 

resource-related products and services by studying individuals’ choices given the trade-

off between costs and benefits they bear. For example, in natural resource management, 

Adamowicz et al. (1998) applied it to wildlife, Scarpa et al. (2007) used it to study water 

economics, and Johnston and Duke (2007) applied it to land markets. The method has 

also been widely used in recreation activities, including water-based activities, hunting 

and hiking (Adamowicz, et al., 1994; Hanley, et al., 2002; Boxall, et al., 1996). Others 

have also applied it to study product and services markets i.e. for the energy sector, fuels 

and product recycling (Roe, et al., 2001; Susaeta, et al., 2010; Karousakis, et al., 2008). 
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4.3 Methodology 

4.3.1 Building Theoretical Framework of Economics of crop insurance 

4.3.1.1 Hypothetical weather index insurance design  

Given the missing markets for index insurance for agriculture in Malawi, we designed 

a hypothetical version building on one that was previously piloted by World Bank in 

the same country in 2007. The weather index is constructed using rainfall data from all 

weather stations throughout the country.  This index is based on the Malawi 

Meteorological Services Department’s (MMSD) national maize yield assessment 

model, used by the Government since 1992 to produce national maize production 

forecasts each February.  The MMSD (and weather index) model uses daily rainfall as 

the only varying input to predict maize yields and, therefore, production throughout the 

country.  In this way, the model, and therefore the index, isolates the impact of only 

rainfall variability on maize production.  Based on a water balance calculation, the 

model captures not only the total amount of rainfall received at each station but also its 

distribution during the agricultural season and how rainfall deficits impact maize yields.  

By using such a model, a contract can be structured to reflect conditions that would 

impact national maize production and, therefore, food security. The contract has a 

trigger level of 95 percent, i.e., a pay-out is only made if at the end of the agricultural 

season in April the index is calculated to be below the 95 percent trigger level (meaning 

that the season’s index value is less than 95 percent of its long term average, implying 

the total national maize production is also down due to deficit rainfall-related losses).  

If the index is above 95 percent at the end of April, no payment is made. 
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4.3.1.2 The basic Model 

Micro-insurance markets for agriculture risk management are relatively new in Malawi. 

Efforts are at the tender stage to scale-out the adoption of micro-insurance. Given the 

missing agriculture insurance markets, it poses a normative economic challenge to 

estimate the demand for insurance among smallholder farmers. With the evolution of 

the environmental economics discipline, there are methods that have been developed to 

estimate demand for products whose markets have not yet formed (Fonta, et al., 2010).  

 

In essence, the farmer faces two states of the world; with a spell or without a spell. The 

farmer has income endowment m, call it to the state of contingent wealth. If there is a 

climate shock, the associated economic loss is given by L. In the absence of an insurance 

market, the farmer will have income m if there is no spell or alternatively m – L if there 

is a spell. A farmer will purchase insurance to alter his income pattern over the varying 

states of nature. For a farmer who has purchased insurance, in the presence of a loss, he 

will receive a compensation equivalent to C, depending on the magnitude of L. This is 

after the farmer purchased insurance at a premium, P, at a rate of 𝛼  of the total 

compensation C, such that 𝛼𝐶 = 𝑃. 

 

We consider the simplest version of a model where we have one production cycle ahead, 

with two possible states; having a loss or not having a loss. We denote the loss 

probability by π. The farmer’s expected wealth without an insurance policy is given by: 

𝑚̅ = (1 − 𝜋)𝑚 + 𝜋(𝑚 − 𝐿) = 𝑚 − 𝜋𝐿       (1) 

Given this equation, the expected utility of farmer’s income, in a case of no insurance 

policy, is given by: 

𝜓̅ = (1 − 𝜋)𝜓(𝑚) + 𝜋𝜓(𝑚 − 𝐿) = 𝜓(𝑚 − 𝜋𝐿)     (2) 
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Where 𝜓 (.) is the indirect utility function, this equation defines farmers uncertainty in 

their income when there is no insurance cover. The insurance company will offer a 

cover equivalent to C going at a premium rate of 𝛼[0,1], while the actual premium is P 

= 𝛼C. An insurance contract will yield a value 𝐸[𝜓(π, 𝑃, 𝐶)]  = (1 − 𝜋)𝜓(𝑚) +

𝜋𝜓(𝑚 − 𝐿 − 𝑃 + 𝐶). A farmer can iterate between purchasing insurance or not 

purchasing. However, the decision to purchase will only be rational if: 𝐸[𝜓(𝜋, 𝑃, 𝐶)] ≽

𝐸[𝜓(𝜋, 0)] = 𝐸[𝜓(𝜋,𝑚,𝑚 − 𝐿)]. We denote expected utility, 𝐸[. ] as 𝜓̅ to economize 

on space. The farmer seeks to solve the following problem:  

max
𝑃≥0

𝜓̅ = (1 − 𝜋)𝜓(𝑚 − 𝑃) + 𝜋𝜓(𝑚 − 𝐿 − 𝑃 + 𝐶)     (3) 

Subject to:   𝑃 = 𝛼𝐶 

I first substitute the constraint into the farmer’s objective function and take the first-

order conditions using the Kuhn – Tucker process.  

𝜓̅𝑃(𝑃∗) = −(1 − 𝜋)𝜓′(𝑚 − 𝑃∗) + (
1

𝛼
− 1)𝜋𝜓′(𝑚 − 𝐿 − 𝑃∗ +

𝑃∗

𝛼
) ≤ 0  (4) 

𝑃∗ ≥ 0,   𝜓̅𝑃(𝑃∗) ⊗ 𝑃∗ = 0 

The second-order maximization hypothesis will be; 

𝜓̅𝑃𝑃(𝑃∗) = (1 − 𝜋)𝜓′′(𝑚 − 𝑃∗) + (
1

𝛼
− 1)

2

𝜋𝜓′′ (𝑚 − 𝐿 − 𝑃∗ +
𝑃∗

𝛼
) < 0  (5) 

The utility function will be strictly concave in P at ∀ 𝐶 ∈ ℝ++. Thus, the first-order 

condition, 𝜓̅𝑃(𝑃∗) ⊗ 𝑃∗Will be both necessary and sufficient condition for optimal 

premium, P* > 0.  If we take for the case of optimal premium (Willingness to Pay) being 

greater than 0, 𝑃∗ > 0, which is the case when farmers are willing to pay for insurance: 

                     𝑃∗ > 0 ⇒
𝛼(1−𝜋)

(1−𝛼)
= 𝜋

𝜓′(𝑚−𝐿−𝑃∗+
𝑃∗

𝛼
)

𝜓′(𝑚−𝑃∗)
      

                 
𝛼

(1−𝛼)
=

𝜋

(1−𝜋)

𝜓′(𝑚−𝐿−𝑃∗+
𝑃∗

𝛼
)

𝜓′(𝑚−𝑃∗)
    

 (6) 
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The case where 𝑃∗ = 0, which is the case when farmers are not willing to pay for 

insurance: 

          𝑃∗ = 0 ⇒
𝛼(1−𝜋)

(1−𝛼)
> 𝜋

𝜓′(𝑚−𝐿)

𝜓′(𝑚)
          

                                 
𝛼

(1−𝛼)
>

𝜋

(1−𝜋)

𝜓′(𝑚−𝐿)

𝜓′(𝑚)
     (7) 

In the above two cases, equation 6 implies that the farmer will be willing to pay for crop 

insurance if the ratio of premium rate to the rate of net compensation is equal to the 

ratio of the expected marginal utility of income after compensation to expected income 

from no compensation (no climate shock). In equation 7, the farmer will not be willing 

to pay for insurance if the ratio of the premium rate to rate of net compensation is greater 

than the ratio of expected marginal utility of his income after compensation to the 

expected marginal utility of his income under no compensation.   

 

4.3.1.3 An Extended Model 

Considering the complexity of the weather index insurance, I extend the basic model to 

incorporate several scenarios. For the purpose of specificity, I use the Constant Absolute 

Risk Aversion (CARA)3 utility function form. There are four scenarios that an insured 

farmer will face that will also be helpful in increasing the precision of the approximated 

expected utility of an individual under weather index insurance policy.  In the first case, 

the farmer will suffer a loss with a probability of 𝜋1, and receive a payout for the loss, 

having a utility of 𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶−𝐿). Where 𝜋𝜃 is the probability of reimbursement. 

In the second case, the farmer may not suffer a loss and never get any payout. The 

probability of jointly not suffering a loss and not receiving compensation is given by 

                                                           
3 This is a utility function that is given by 𝑈 = 𝑏 − 𝑒−𝑎𝑥, where u is parametric utility, b >0 is a 

constant, a>0 define the risk aversion factor, x ≥0 is the net wealth of an individual at a given state.  
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𝜋2. The associated utility is 𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶). There are two additional cases that might 

occur if the index is weakly correlated with the loss. First, a farmer suffers a loss, but 

the registered index does not meet the threshold such that there is no payout. I give this 

one a probability 𝜋3, and hence utility of 𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶−𝐿). The last state is when 

chance favours the farmer, in which case, he doesn’t have a loss but the index points 

that there should be compensation. This has a probability of 𝜋4 and a utility function 

𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶). From these possible outcomes, the expected utility of the farmer is 

given by:  

𝜓̅ = 𝜋1[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶−𝐿)] + 𝜋2[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶)] + 𝜋3[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶−𝐿)] +

𝜋4[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶)]        (8) 

The insurer will find the optimal level of production by choosing the optimal level of 

C* from: 

𝜕𝜓̅

𝜕𝐶
= 𝜋1 [𝑏 −

𝜕

𝜕𝐶
𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶−𝐿)] + 𝜋2 [𝑏 −

𝜕

𝜕𝐶
𝑒−𝑎(𝑚−𝜋𝜃𝐶)] + 𝜋3 [𝑏 −

𝜕

𝜕𝐶
𝑒−𝑎(𝑚−𝜋𝜃𝐶−𝐿)] + 𝜋4 [𝑏 −

𝜕

𝜕𝐶
𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶)] = 0  

 

4.3.1.4 Supply side optimal Insurance Pricing 

The demand for insurance facing each insurer will be a function of its own price and 

the price of other insurers. The assumption is the insurers set prices simultaneously 

while producing a homogenous product. In the case of Malawi, where insurance 

markets are not fully developed, and only a limited number of insurance companies 

operate, the market may mirror the oligopoly structure. That is, the demand for the 

product for each insurer will be a proportion of market demand defined by a share of 

farmers that may contract with a given insurer. The expected profit for the insurer will 

be given by:  
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Π̅ = 𝐷⨂𝑧(𝑝𝑖, 𝑝𝑚̅)(𝑝𝑖 − 𝑣𝑐 − 𝜋𝐶) − 𝐹𝐶 

Where, 𝑝𝑚̅ is the aggregate premium for all other insurers except for insurer i, pi is the 

premium offered by i, vc is the variable cost, C is the compensation payout, 𝜋 is the 

probability of a weather index falling below a threshold and FC is the fixed cost, D is 

the market demand, and z is the market share for insurer i.  The first-order condition to 

the insurer's profit maximization problem will be: 

∂Π̅

𝜕𝑝𝑖
=

∂𝑧𝑖

𝜕𝑝𝑖

(𝑝𝑖, 𝑝𝑚̅)𝐷(𝑝𝑖 − 𝑣𝑐 − 𝜋𝐶) + 𝐷𝑧𝑖 = 0 

Remembering price elasticity of demand is given by 𝜖 =
∂𝑄𝑧(𝑝𝑖,𝑝𝑚̅̅̅)

𝜕𝑝𝑖
.

𝑝𝑖

𝑄𝑧(𝑝𝑖,𝑝𝑚̅̅̅)
⟹

∂𝑄𝑧(𝑝𝑖,𝑝𝑚̅̅̅)

𝜕𝑝𝑖
= 𝜖

𝑄𝑧(𝑝𝑖,𝑝𝑚̅̅̅)

𝑝𝑖
. Using this concept in the first-order condition, we get:  

𝑧𝑖

𝑝𝑖
𝜖𝐷(𝑝𝑖 − 𝑐 − 𝜋𝐶) + 𝐷𝑧𝑖 = 0 

Thus,  

−𝜖(𝑝𝑖, 𝑝𝑚̅) =
𝑝𝑖

𝑝𝑖 − 𝑐 − 𝜋𝐶
 

The right side shows that it depends on 𝑝𝑖 only while the left-hand side depends on both 

𝑝𝑖 and 𝑝𝑚̅. Representing these two in a two-dimension space will show where they 

intersect. The intersection point is the premium price that is the best response for 

insurers i. Each insurer will continue to alter their reaction function based on other 

insurers prices until there is no more incentive for profit from changing the premium. 

The best reaction function will yield an equilibrium price, p*, for which case, 𝑝𝑖 = 𝑝𝑚̅ 

= p*. Therefore, from the above equation, the equilibrium premium price will be given 

by: 

−𝜖(𝑝∗, 𝑝∗) =
𝑝∗

𝑝∗−𝑐−𝜋𝐶
⇒ 𝑝∗ =

(𝑐+𝜋𝐶)𝜖(𝑝∗,𝑝∗)

𝜖(𝑝∗,𝑝∗)+1
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4.3.2 Econometric Model Construction 

4.3.2.1 Estimating the determinants of Willingness to Pay Model 

The objective here is to estimate the relationship between predetermined farmer specific 

characteristics and the Willingness to Pay for Weather Index Insurance. For a given 

amount of willingness to pay in money metric subtracted from the farmer's income, the 

farmer will either be in apposition to say no to a dichotomous choice question of 

Contingent Valuation Method or accept a specified bid for a willingness to pay value. 

This choice problem can be modelled by extending what was proposed by Hanemann 

(1984). The farmer’s expected utility function is given by: 

𝜓̅ = 𝜋1[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶−𝐿)] + 𝜋2[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶)] + 𝜋3[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶−𝐿)] +

𝜋4[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶)]        

 (9) 

Where the arguments are as earlier defined, a farmer is faced with two parallel worlds, 

first, the expected profitability of the agriculture venture without an insurance policy, 

and second, the expected profitability of an agriculture venture with a subscription to 

an insurance policy.  

 

We notice that farmer’s income is the most limiting asset at the farmer’s disposal. The 

farmer, therefore, will be willing to pay an insurance premium in such a way as to 

maximize utility under certain conditions otherwise reject: 

𝜓̅1 = [𝜋1[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶−𝐿)] + 𝜋2[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶)] + 𝜋3[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶−𝐿)] +

𝜋4[𝑏 − 𝑒−𝑎(𝑚−𝜋𝜃𝐶+𝐶)]]  ≿ [𝜋1[𝑏 − 𝑒−𝑎(𝑚−𝐿)] + 𝜋2[𝑏 − 𝑒−𝑎(𝑚)]] = 𝜓̅0   

 (10) 

Where, 𝜋𝜃𝐶, is the BID, or the insurance premium per hectare for the climate risk 

management, e1 and e0 are the random error components with an expectation of zero, 
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and they are independently distributed. Therefore, the probability that a farmer will 

decide to pay for the crop insurance is the probability of observing a conditional 

expected indirect utility function for the proposed policy change (with insurance) being 

greater than the expected indirect utility function for the status quo (without insurance). 

 

In practice, we do not observe utility. The utility is a latent variable and can be studied 

by observing farmers’ choices for or against insurance, and the associated choice 

reflects the rational choice given the unobservable utility levels. The utility of the farmer 

is a function of the observable characteristics, including household characteristics, 

institutional, socio-demographic and the stochastic component, e. 

𝜓̅ = 𝑓(𝑥) +  𝑒                                                                                          (11)           

Where f(.) is a function of factors that are hypothesized to affect choices around 

insurance, from the literature survey, these factors include the age of the farmer, gender, 

education, income, household size, land size, farming experience, livestock ownership, 

access to credit, extension contact. Other specific variables that will also be tested 

include previous experience of shocks, remittances, the recent history of food security, 

and the use of drought-tolerant seed varieties.  

 

Equation (11) is a choice modelling problem that seeks to establish the probability of 

accepting an initial bid. A rational farmer is constrained to accept an initial bid if 

𝜓̅1(. ) ≿ 𝜓̅0(. ). This narrows down from latent to an observable dichotomous choice 

modelling problem of outcome y, where: 

 𝑌 = {
1 𝑖𝑓 𝜓̅1(. ) + 𝑒1 ≥ 𝜓̅0(. ) + 𝑒1

0 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
}                                                                 (12) 

From this, the probability that a given farmer is willing to pay for crop insurance is 

given by 
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𝑃𝑟𝑜𝑏(𝑌 = 1)  = 𝑃𝑟𝑜𝑏(𝜓̅1(. ) ≥ 𝜓̅0(. ))                                                      (13) 

If we substitute equation (13) into equation (11) we get: 

𝑃𝑟𝑜𝑏(𝑌 = 1)  = 𝑃𝑟𝑜𝑏(𝛼1𝑋 + 𝑒1 ≥ 𝛼0𝑋 + 𝑒0)                                                      (14) 

By rearranging equation 14 we get: 

𝑃𝑟𝑜𝑏(𝑌 = 1)  = 𝑃𝑟𝑜𝑏(( 𝑒1 − 𝑒0) ≥ 𝑋(𝛼0 − 𝛼1) )                                                      (15) 

We can constrain the stochastic component and the parameters according to 𝜀 = 𝑒1 −

𝑒0, and 𝛽 = 𝛼0 − 𝛼1, the equation that is estimable becomes; 

𝑃𝑟𝑜𝑏(𝑌 = 1)  = 𝑃𝑟𝑜𝑏(𝜀 ≥ 𝑋𝛽 ) = 𝐺(𝑋; 𝛽)                                                     (16) 

This is a cumulative probability distribution function. It provides a structural model for 

the estimation of the probability of subscribing to a crop insurance policy. The model 

can either be estimated using logit or probit formulation depending on the assumptions 

made about the stochastic component (Greene, 2002). It is assumed that the stochastic 

component is normally distributed with a zero mean. In such a case, the logit model 

could best explain the data generation process. The logit model for willingness to pay 

for an insurance policy is specified following Hanemann et al. (1991) as: 

𝑌 ∗= 𝑋𝛽 + 𝜀                                                                                              (17)         

Where 𝑌 = 1 𝑖𝑓 𝑌 ∗∈ ℝ++and 𝑌 = 0 𝑖𝑓 𝑌 ∗∈ ℝ−. Where coefficient vector to be 

estimated is given by 𝛽, X is a vector of determinants of willingness to pay, Y* is 

farmer’s unobservable (latent) willingness to pay for crop insurance, Y is a Bernoulli 

response of willingness to pay by farmers, 𝜀 is a normally distributed random error 

term with constant variance. 
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4.3.2.2 Parametric Estimation of Willingness to Pay for Weather Index Insurance  

The study designed a hypothetical insurance market that was presented to a farmer as is 

the case with contingent valuation methods. The following statement was read to the 

farmer before presenting bids for willingness to pay:  

 

“I would like to ask you a number of questions related to the potential 

of introducing a new index-based maize crop insurance scheme in 

your area. The nature of the proposed scheme is as follows: you pay a 

fixed amount of money for the next one year (an insurance premium) 

to a designated insurance company to cover your maize crop against 

droughts in the production season. This amount is supposed to be paid 

at the beginning of the rain season to cover rain season agriculture 

production, only in the case of an officially acknowledged drought 

(Rainfall below what maize crop requires for optimum yield) 

occurrence that you will get compensated for any losses incurred on 

your farms. In case the disaster is not officially recognized, you will 

not be compensated. However, if there is a registered drought disaster 

and you did not experience losses, you will get the compensation still. 

Similarly, you will not get compensation if you experience losses, but 

there is no registered drought. The meteorological experts will 

determine rainfall amount”. 

 

From equation 9, the farmers’ expected utility from index insurance will either be 0 or 

positive and this moderates farmers’ willingness to pay for index insurance. Those with 

positive expected indirect utility will indicate a positive willingness to pay, while those 
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with a non-positive expected utility will not be willing to pay for the index insurance. 

We let the w0 be the first bid premium, and w+ is the follow-up higher bid premium 

conditional on acceptance of the first bid and w- is the follow-up lower bid premium 

conditional on the rejection of the first bid. Thus, if a farmer is affirmative to the first 

bid, the second bid w+ is formulated to be higher than w0; otherwise, if the farmer says 

no to the first bid, then w- is formulated to be lower than the w0. This multi-stage bidding 

game will have the four outcomes; 𝜋𝑦𝑦 , 𝜋𝑛𝑛 , 𝜋𝑦𝑛, 𝜋𝑛𝑦 . The probability that a farmer 

answers yes to both the first and the second bid is given by: 

𝜋𝑦𝑦(𝑤0, 𝑤+) = 𝑃𝑟(𝑤0  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃 ⋀ 𝑤+

≤ 𝑚𝑎𝑥 𝑊𝑇𝑃)                                                (18) 

      = 𝑃𝑟{𝑤0  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃| 𝑤+ ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃}𝑃𝑟{ 𝑤+ ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃} 

      = 𝑃𝑟{𝑤+  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃} = 1 − 𝐺(𝑤+; 𝛽) 

It follows from the above that with 𝑤0 < 𝑤+, 𝑃𝑟{𝑤0  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃| 𝑤+ ≤

𝑚𝑎𝑥 𝑊𝑇𝑃} ≡ 1. Similarly, with 𝑤− < 𝑤0, 𝑃𝑟{𝑤−  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃| 𝑤+ ≤

𝑚𝑎𝑥 𝑊𝑇𝑃} ≡ 1, Therefore; 

𝜋𝑛𝑛(𝑤0, 𝑤−) = 𝑃𝑟(𝑤0  > 𝑚𝑎𝑥 𝑊𝑇𝑃 ⋀ 𝑤− > 𝑚𝑎𝑥 𝑊𝑇𝑃}  = 𝐺(𝑤−; 𝛽)            (19) 

When a farmer accepts the first bid and rejects the second higher bid, we will have 

𝑤+ > 𝑤0, and: 

𝜋𝑦𝑛(𝑤0, 𝑤+) = 𝑃𝑟(𝑤0  ≤ 𝑚𝑎𝑥 𝑊𝑇𝑃 ≤ 𝑤+}  = 𝐺(𝑤+; 𝛽)  − 𝐺(𝑤0; 𝛽)           (20) 

When a farmer rejects the first bid and accepts the second lower bid, we will have 

𝑤− < 𝑤0, and: 

𝜋𝑛𝑦(𝑤0, 𝑤−) = 𝑃𝑟(𝑤0  ≥ 𝑚𝑎𝑥 𝑊𝑇𝑃 ≥ 𝑤−}  = 𝐺(𝑤0; 𝛽)  − 𝐺(𝑤−; 𝛽)           (21) 

In the above derivations, there are two sets of equations; Equations 18 and 19 are 

single bounded and allow the research to lower the bound for upper bound and to raise 

the bound for the lower bound.  Whereas equation set 20 and 21 are double bounded 
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and allow the researcher to fix an upper and lower bound on the true WTP, which is 

unobservable.  With bids, w0, w+, and 𝑤−, the log-likelihood function for estimation 

is: 

𝑙𝑛𝐿𝐷(𝛽) = ∑{𝑑i
𝑦𝑦

𝑙𝑛𝜋𝑦𝑦(𝑤0, 𝑤+)

𝑛

𝑖=1

+ d𝑖
𝑛𝑛(𝑤0, 𝑤−)𝑙𝑛𝜋𝑛𝑛(𝑤0, 𝑤−) 

+ 𝑑i
𝑦𝑛

𝑙𝑛𝜋𝑦𝑛(𝑤0, 𝑤+) +  𝑑i
𝑛𝑦

𝑙𝑛𝜋𝑛𝑦(𝑤0, 𝑤−)}                               (22) 

Where d* are the dichotomous valued indicator variables. For example, 𝑑i
𝑦𝑦

 Is equal to 

one if the respondent answered yes to both the first and the second bid, and it's zero if 

otherwise. Their corresponding probabilities are as earlier presented in Equations 18 to 

19. With some assumptions of the G(.), the model can be parametrized using the 

maximum likelihood technique. The maximum likelihood estimator is the solution to 

the first-order differentiation; 𝜕𝑙𝑛𝐿𝐷(𝛽)/𝜕𝛽 = 0. If G(.) is the standard logistic CDF, 

equations 18 to 21 becomes:  

𝜋𝑦𝑦(𝑤0, 𝑤+) = 1 − 𝐺(𝑤+; 𝛽)            

                          =
1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤+)
          

                         = 𝑒𝑥𝑝(𝛼 −  𝛽𝑤+)      (23) 

𝜋𝑛𝑛(𝑤0, 𝑤−) = 𝐺(𝑤−; 𝛽)            

                          = 1 −
1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤−)
          

                         = 1 − 𝑒𝑥𝑝(𝛼 −  𝛽𝑤−)      (24) 

𝜋𝑦𝑛(𝑤0, 𝑤+) = 𝐺(𝑤+; 𝛽)  −  𝐺(𝑤0; 𝛽)     

                          = {1 −
1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤+)
 } − {1 −

1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤0)
} 

                         = 𝑒𝑥𝑝(𝛼 −  𝛽𝑤0) − 𝑒𝑥𝑝(𝛼 −  𝛽𝑤+)    (25) 

𝜋𝑦𝑛(𝑤0, 𝑤−) = 𝐺(𝑤0; 𝛽)  −  𝐺(𝑤−; 𝛽)     
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                          = {1 −
1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤0)
 } − {1 −

1

𝑒𝑥𝑝(−𝛼 + 𝛽𝑤−)
} 

                         = 𝑒𝑥𝑝(𝛼 −  𝛽𝑤−) − 𝑒𝑥𝑝(𝛼 −  𝛽𝑤0)    (26)  

 

The corresponding log-likelihood function is given by:  

𝑙𝑛 𝐿 =  ∑ [𝑑𝑖
𝑦𝑦𝑁

𝑛=1 𝑙𝑛{exp(𝛼 − 𝛽𝑤−)} + 𝑑𝑖
𝑛𝑛𝑙𝑛{1 − 𝑒𝑥𝑝(𝛼 − 𝛽𝑤−} +

𝑑𝑖
𝑦𝑛

𝑙𝑛{exp(𝛼 − 𝛽𝑤0) − exp(𝛼 − 𝛽𝑤+)} + 𝑑𝑖
𝑛𝑦

𝑙𝑛{exp(𝛼 − 𝛽𝑤−) − exp(𝛼 −

𝛽𝑤0)}]       (27) 

The asymptotic variance-covariance for the estimator is given by;  

𝑉𝐷(𝛽̂𝐷) = [−𝐸
𝜕2𝑙𝑛𝐿𝐷(𝛽̂𝐷)

𝜕𝛽 𝜕𝛽′
]

−1

≡ 𝐼𝐷(𝛽̂𝐷)−1                                                            (28) 

The model was estimated using the DCchoice R packages in the R environment. This 

package provides functions for analyzing single-, one-and-one-half-, and double-

bounded dichotomous choice contingent valuation (CV) data. (Aizaki et al., 2014).  The 

Likelihood Ratio Chi-square statistic, Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were used to test the goodness of fit of the model.  Table 

4.1 lists all the variables that were included in the estimation of the willingness to pay 

along with their prior expected signs.  

 

Several measures of Willingness to Pay estimates can be derived in the course of the 

model estimation procedure. First, the mean willingness to pay (MWTP) was derived 

as: 

𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 = ∫ [1 − 𝐺(𝑤)]𝑑𝑤
∞

0
         (29) 

In equation 29, the integration runs to infinity, meaning that there are some individual 

respondents whose willingness to pay is greater than their income. This goes against the  
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Table 4.1: Description of the variables included in the parametric estimation of 

WTP 

Variable Description  Expected sign 

Age Age of a farmer in years + 

Age squared Squared Age of a farmer in years - 

Gender 1= farmer is male 

0= farmer is female 

+ 

Education Number of completed years in school + 

Experience of climate shocks 1= Experience a climate shock last 12 

moths 

0= Otherwise 

+ 

Access to extension service 1= Received advice on weather 

0= Otherwise 

+ 

Household income Average monthly income (MK) + 

Family size Number of household members - 

Maize Farm size (Ha) Size of maize field (Ha) +/- 

Farming experience Number of years in farming  +/- 

Remittances received  1= Receive remittances 

0= Otherwise 

+/- 

Use of DT Variety 1= Used DT maize variety 

0= Otherwise 

+/- 

Livestock ownership (poultry) 1= Household has small livestock 

0= Otherwise 

+ 

Livestock ownership (Large) 1= Household has lager livestock 

0= Otherwise 

+ 

Previous Food Security Status 1= Experience food shortage in past year 

0= Otherwise 

+ 

Bid price Bid in amount (MK) of willingness to 

pay 

- 

 

standard economic theory, as no one would pay for something that costs more than their 

income. To overcome this problem, a truncated mean at the maximum bid in the survey 

is used. Boyle et al. (1988) proposed a normalization routine of the probability density 

function (PDF) with the assumption that 𝐹(𝑤) = 0, 𝑖𝑓  𝑤 > 𝑤𝑚𝑎𝑥.  It is necessary to 
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normalize so that the statistical properties are preserved even after truncation. Thus, the 

truncated mean WTP was calculated as:  

∫
[1−𝐺(𝑤)]

𝐹(𝑤𝑚𝑎𝑥)
𝑑𝑤

𝑡𝑚𝑎𝑥

0
      (30) 

The last measure is the median WTP which is more robust to the influence of outliers 

(Hahnemann, 1984). This estimate is given by: 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑊𝑇𝑃 =  𝐹−1(0.5)       (31) 

 

4.3.2.3 Non-Parametric Estimation of the Willingness to Pay 

As has been noticed in the previous sections, parametric estimations require a priori 

specification of the distribution of WTP. The parametric approach uses the maximum-

likelihood method, which will yield consistent estimates of WTP only when the 

specified probability distribution is correct. However, in practice, it is difficult to 

correctly specify the probability distribution. This requires checking the robustness of 

the estimates using a non-parametric approach that does not impose any prior 

distribution. The only restriction that is imposed on non-parametric is the weak 

monotonicity.  

 

This study applied the Kaplan–Meier–Turnbull estimator (Carson, et al., 2005) to 

estimate the non-parametric mean of WTP for the farmers. Given that farmers were 

issued bids Cj, such that j=1,2,…M denotes the index for the order of the bids. In 

addition, Cj >Ck for any j >K and C0 = 0. The probability that the farmer’s willingness 

to pay is in the interval Cj-1 and Cj is Pj. Thus,  

𝑃𝑗 = Pr (𝐶𝑗−1 < 𝑊𝑇𝑃 < 𝐶𝑗  )∀ 𝑗 = 1,2, . . 𝑀 + 1 

The cumulative distribution is given by: 

𝐹𝑗 = Pr(𝑊𝑇𝑃 > 𝐶𝑗) for j = 1, …, M+1 



 

172 
 

Where FM+1 =1 and F0 = 0. 

And 𝑃𝑟𝑗 = 𝐹𝑗 − 𝐹𝑗−1 

The Turnbull likelihood is expressed as probability and the cumulative distribution 

function:  

𝐿(𝐹;𝑁, 𝑌) = ∑[𝑁𝑗 ln(𝐹𝑗) + 𝑌𝑗ln (1 − 𝐹𝑗)]

𝑀

𝑗

 

𝐿(𝑃;𝑁, 𝑌) = ∑ [𝑁𝑗 ln(∑ 𝑃𝐽
𝑗
𝑖=1 ) + 𝑌𝑗ln (1 − ∑ 𝑃𝑗

𝑗
𝑖=1 )]𝑀

𝑗   

 

Where Nj is the number of people who respond No to Cj and Yj is the number of people 

who respond yes to Cj.. Considering first and second bids: Pr1 =
𝑁1

𝑁1+𝑌1
 and 

Pr2 =
𝑁2

𝑁2+𝑌2
− Pr1. Thus, Pr2 will only be positive if 

𝑁1

𝑁1+𝑌1
<

𝑁2

𝑁2+𝑌2
. However, if the 

opposite is true, then the unconstrained estimate of Pr2 will tend to be negative. The 

Kuhn-Turker outcome of binding non-negativity constraint for Pj is summing jth and (j 

– 1)th cells. This is defined as  𝑁𝑗
∗ = 𝑁𝑗 + 𝑁𝑗−1, similarly,   𝑌𝑗

∗ = 𝑌𝑗 + 𝑌𝑗−1 and then Pr 

is re-estimated as:  

Pr𝑗 =
𝑁𝑗

∗

𝑁𝑗
∗ + 𝑌𝑗

∗ − ∑ 𝑃𝑘

𝑗

𝑘=1

 

This algorithm yields the constrained maximum of the likelihood function using the 

Kuhn-Tucker conditions. It searches for the largest number of cells within a monotonic 

increasing CDF. An and Ayala (1996) uses the iterative technique. The above procedure 

is used to derive survival curves. But, then the probability mass is derived for each bid, 

inter bid curve can be realized by interpolation. Various interpolation procedures have 

been used previously. Scarpal et al. (1998) use a kernel estimation to connect points by 

the weak concept of continuity. Kristom (1990) uses linear interpolation and solves the 
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mean willingness to pay by finding the area and the interpolated line. This study uses a 

more conservative approach to interpolating between successive bids. In this approach, 

the survival curve between two adjacent bids, Cj+1  and Cj  is interpolated with 𝑆̂(𝐶𝑗), 

which is the lower of the two probabilities. The mean willingness to pay corresponds to 

the area under the step function:  

𝑚𝑒𝑎𝑛𝑊𝑇𝑃𝐾𝑀𝑇 = ∑ 𝑆̂(𝐶𝑗)(
𝐽

𝑗=1
𝐶𝑗+1 − 𝐶𝑗) 

This estimate is called Kaplan–Meier–Turnbull (Carson, et al., 2005). The Kaplan–

Meier–Turnbull is a step function making it impossible to have a point estimate of the 

median WTP, but rather an interval estimate in which the point estimate is likely to be 

(Carson, et al., 1990).   

 

4.3.3 Data and sampling strategy 

4.3.3.1 Study area 

The study was conducted in five districts of Mzimba, Nkhata-Bay (both from the 

Northern Region), Nkhotakota, Ntchisi, Kasungu, Lilongwe, Dowa, Mchinji (all from 

Central Region) and Zomba, Machinga (Southern Region). The choice of the district is 

based on the NASFAM district, where a project on weather index insurance was to be 

implemented. The map below (Figure 4.2) shows the spatial distribution of the study 

districts. To the right, it shows where the specific sites are geo-referenced on the map 

of Malawi. 
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Figure 4. 2: Map of the study districts 

 

4.3.3.2 Sample size  

Computation of the optimal sample size requires an initial specification of assumptions 

on parameters of the sample size formula. The first parameter is the confidence interval 

of 95%. As the study was a clustered face-to-face survey, it was expected that there 

would be an intra-cluster (farmer club) correlation for the key variables. This is because 

farmers within the same cluster were sharing the same soils, pests, market access, 

indigenous knowledge etc., which results in these farmers achieving similar results to 

farmers in clusters that are far apart where conditions between them are very different. 

The amount of new information that each new survey farmer provides from within the 

same sampled cluster would be less than that of a new farmer. This loss of independence 

between multiple observations within the cluster was taken into account by multiplying 

the base sample size by a design effect of 2 (Edriss, 2012). Using the following sampling 
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parameters: Minimum statistically significant difference in maize yield of 25%; 95% 

level of significance; population size of 100,000; Design Effect of 2 for correction of 

clustering effect; resulted in a sample size of 1170.  

 

The sampling frame for the farmer's universe included all farmers in the five districts 

who belonged to farmer clubs which was obtained from the National Association of 

Farmers in Malawi. Farmers were organised in clubs of 10 farmers. Therefore, the 

procedure used was to proportionately allocate the sample clubs according to the 

population of farmers in the study district, as shown in Table 2. In total, 117 clubs were 

sampled. Within each club sampled, members were randomly divided into primary and 

secondary (replacement) farmers. Primary farmers were the ones that were targeted to  

 

Table 4.2: Sample distribution across zones 

District Sample size Clusters 

Dowa 47 6 

Kasungu 217 27 

Lilongwe 318 40 

Machinga 50 6 

Mchinji 289 36 

Mzimba 55 7 

Nkhatabay 16 2 

Nkhotakota 71 9 

Ntchisi 53 7 

Zomba 54 7 

Total  1170 146 

 

be interviewed from the sampled club, while secondary ones were those that served as 

replacements where the target for the primary was not met for a club due to member 

absence or other reasons. The number of sampled farmers from each cluster was 8, and 
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this left two other farmers within the cluster to act as replacements when any of the 

primary sample farmers were not available. The achievement was possible because of 

the replacement farmers that were put in place during the design of the data collection. 

One of the reasons to replace sample farmers included attrition of club members. 

Overall, the interviews comprised of 89% primary respondents and 11% replacement. 

Fortunately, all respondents that were available for the interview consented to 

participate in the study.  

 

A number of data quality procedures were put in place to ensure minimal errors as much 

as possible. Highlighting some of these; First, the questionnaire was programmed on 

tablets with necessary skip patterns and consistency checks. Where inconsistent entries 

were done, the tablet could flag an error message so as to alert the interviewer before 

proceeding with the interview. Before deploying the teams into the field, they were 

thoroughly trained in the tool coupled with preliminary piloting to get them to 

familiarize with it and iron out some bottlenecks in the question wording, translations 

and pre-coded responses.  

 

4.4. Results and Discussion 

This section presents the key findings of the current study. It starts by presenting the 

background characteristics of the studied farmers. In turn, the parametric econometrics 

results of the model used are presented for the farmers' willingness to pay for weather 

index insurance. Lastly, the economic value of the weather index insurance is presented 

based on the willingness to pay.  
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4.4.1 Characteristics of the sampled farmers 

4.4.1.1 Socio-demographic characteristics 

The sociodemographic characteristics of the surveyed farmers are presented in Table 

4.3. The summary shows that the average age of the farmers was about 45 years. This 

age is within the economically active age group of 15 to 65 for Malawi as a country. 

The implication is that with the adoption of the weather index insurance, this 

economically active population could smoothen their agriculture enterprise 

performance in the face of shocks. Most of the households were headed by males. In 

total, the male-headed households comprised 78% of the total surveyed farmers. This is 

consistent with the national ratio of household headship to 75% male-headed 

households (NSO, 2017). 

 

Table 4.3: Sociodemographic characteristics of sampled farmers 

Characteristic Statistics Std Deviation 

Age of household head (years) 44.5 14.3 

Gender of household head (1/0), Male=1 0.783 0.41 

Education level of household head (1/0)   

      None 0.16 0.10 

     Std 1 to 5 0.29 0.45 

     std 6 to 8 0.36 0.48 

     Form 1 to 2 0.10 0.30 

     Form 3 to 4 0.08 0.28 

     Adult literacy 0.01 0.07 

    Tertiary 0.00 0.00 

Household size 5.09 1.781 

Dependency ratio 0.47 0.22 
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Characteristic Statistics Std Deviation 

Income level (MK/Month) 28,317.51 20,066 

Food security (1/0) 0. 32 0.12 

Marital status (1/0)   

           Married Monogamous 0.79 0.41 

           Married Polygamous 0.06 0.24 

           Divorced 0.06 0.23 

           Separated 0.01 0.10 

Total farm area (Ha) 1.376 0.68 

Maize Farm size (Ha) 0.537 0.23 

Experience of climate shocks (1/0) 0.51 0.21 

Access to extension service (1/0) 0.28 0.10 

Farming experience (Years) 16 7.20 

Remittances received (1/0) 0.21 0.11 

Previous Food Security Status (1/0) 0.35 0.19 

 

The education level of farmers is very crucial in understanding new and emerging 

agriculture technologies and innovations. The study registered 16% of farmers who 

have not attended any formal education system. Most of the farmers have gone to a level 

of junior and senior primary school.  Around 18% of the farmers went as far as to attend 

secondary education. None of the farmers attended professional post-secondary 

education training. Not surprising, as those who have the opportunity to attend tertiary 

education have expanded opportunities to grab off-farm jobs elsewhere in urban areas. 

On average, each household had five members. This translates into a dependence ratio 

of 0.47. Given their mean monthly income of MK28,317, it implied that per capita 

income was less than a dollar per day. This explains the levels of vulnerability the 

surveyed farmers are hooked in due to shocks that can have an impact on their 
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consumption function. Although these households are farming families, only 32% 

reported having adequate food reserves to run them through the entire year before the 

next harvest. The average agriculture landholding size (natural capital) that was 

currently in agriculture use at the time of the survey was 0.7 hectares against the national 

average of 0.57 (NSO, 2017).  

 

4.4.1.2 Livestock endowment 

Livestock can be a source of income, food and nutrition security to households. 

Livestock provides a safety net, helping keep poor households from falling into poverty. 

It can be traded off to meet emergency family and health needs. It can also provide the 

household’s coping capacity to impending shocks. 

  

The most common livestock type kept by farmers was indigenous chickens (Table 4.3). 

Some have nicknamed it “village land rover”, alluding to its resilient characteristics. It 

was owned by 75% of farmers. The indigenous chicken breed is widely preferred to 

exotic because of its resilience to diseases and low management cost through a free-

range system of production. The hybrid breed was by none of the farmers. Goats were 

owned by about 42% of farmers. It is becoming a common practice in most communities 

in Malawi that when community members share Villages Savings and Loans (VSL) 

proceeds, they purchase goats which they use to start livestock pass-on schemes. This 

has facilitated most of the farmers to have access to goats through the informal savings 

groups. Pigs were the third commonly owned livestock enterprise as 24% of farmers 

reported keeping pigs. Further analysis showed that any farmer who owned livestock 

had at least a local chicken. Cattle production was not common, and higher ownership 
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was found in districts of Northern Malawi, where it is usually used to pay for bride price 

in their marriage system.  

 

Table 4.4: Percentage of farmers owning various livestock types 

Livestock type Female Male Total 

Cattle 3.9% 6.9% 6.4% 

Goats 45.5% 41.7% 42.3% 

Sheep 3.9% .6% 1.1% 

Pigs 18.2% 25.3% 24.0% 

Local chickens 81.8% 73.6% 75.1% 

Hybrid chickens 0.0% 0.0% 0.0% 

Any livestock 81.8% 73.6% 75.1% 

 

4.4.2 Existing climate risk management strategies 

Even in the absence of weather index insurance, farmers do invest in other pre-and post-

disaster management strategies. A number of these strategies and their statistics are 

presented in Table 4.5. The statistics show that farmers are working their best to employ 

various technologies to reduce the effects of climate risks on their capital. The 

percentage of farmers who adopted more than three Climate Smart Agriculture (CSA) 

technologies was 64%. Those who adopted conservation agriculture, defined as those 

who adopted minimum tillage, mulching and crop mixes (either intercropping or 

agroforestry) was reported to be 9%. The percentage of farmers who practised irrigation 

farming was 13%. Most of the farmers (45%) are switching to Drought Tolerant (DT) 

Maize varieties to withstand harsh weather conditions.  

 

Table 4. 5: Percentage of farmers who adopted climate smart agriculture (CSA) 

technologies  

CSA Technologies Female Male Total 

Minimum tillage  15.7%  9.9%  11.0% 

Crop residues  81.1%  77.4%  78.1% 

Intercropping  7.1%  12.6%  11.7% 

Manure  44.9%  34.6%  36.5% 

Agroforestry  59.8%  63.6%  63.0% 
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CSA Technologies Female Male Total 

Irrigation  4.7%  7.9%  7.3% 

DT Maize variety  37.0%  47.0%  45.0%  

Diversified 

crop/livestock 

farming 

 62.2%  64.6%  64.2% 

Conservation 

agriculture 

package4 

 14.2%  7.7%  8.8% 

At least one CSA 

Technology of the 

above 

 100.0%  100.0%  100.0% 

At least three CSA 

technologies 

 62.2%  64.6%  64.2% 

 

4.4.3 Estimation of Willingness to pay for Weather Index Insurance 

4.4.3.1 Description of the Willingness to pay 

The key thrust of this study was to estimate the willingness to pay for weather index 

insurance by smallholder farmers using a dichotomous choice technique with a follow-

up. Farmers were assigned random bids, which were programmed to be randomly 

assigned within the data collection tablet gadgets. A collection of these random bids 

was drawn from a pilot study of 60 farmers. These farmers were served with an open-

ended question on what maximum amount they would be willing to pay for weather 

index insurance for a hectare of maize farmland after thoroughly explaining to them 

about the hypothetical market. Table 4.6 gives a summary of the random assigned initial 

bids and their follow-up bids.  

 

Given the first question of the bidding game, the first row for each bid summarizes the 

responses that were affirmative, and the second row summarizes those who rejected the 

                                                           
4 Conservation agriculture consists of minimum tillage, mulching (soil cover) and crop rotation or crop 

mixes 
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first bid. Thus, each outcome for the randomly assigned first bid is summarized per row 

according to its response. In total, 32% of the farmers were affirmative to the first bid. 

Particularly, 12% were willing to pay MK2000, 9% for MK4000, 5% for MK6000, and 

6% for MK8000. For the farmers who answered “yes” to the first bid, a follow-up bid 

hiked by 100% was presented. For those that answered “no” the second bid was cut by 

half.  

 

Table 4.6: Summary of Double-Bounded Dichotomous Responses 

Initial bid Follow-up 

bid 

First Question Second question 

Yes to 

initial Bid 

No to 

Initial Bid 

Yes to 

Follow-up 

No to 

Follow-up 

MK 2000 MK 4000 12% 0% 4% 8% 

MK 2000 MK 1000 0% 18% 2% 16% 

MK 4000 MK 2000 9% 0% 5% 9% 

MK 4000 MK 8000 0% 14% 4% 5% 

MK 6000 MK 12000 5% 0% 1% 4% 

MK 6000 MK 3000 0% 15% 4% 11% 

MK 8000 MK 16000 6% 0% 1% 4% 

MK 8000 MK 4000 0% 21% 5% 17% 

 

For the second bid, we have another, either a “yes” or a “no”, regardless of their 

response to the first question. Some who responded “yes” to the first bid gave a “no” 

response to the second bid. Similarly, some who answered “no” to the first bid, when 

presented with the lower follow-up bid they answered a “yes”. About 5% of the farmers 

were willing to pay MK4000, regardless of the rejection to pay MK8000 in the initial 

bid. In the same vein, those who accepted to pay MK8000, when followed up with a 
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doubled value of bid (MK16000), 1% of the farmers were still willing to pay the 

amount. A similar analysis applies to the other values of the second bid.  

 

Further analysis is done to unpack the joint distribution of the outcomes of the initial 

and follow-up bid. Four possible outcomes are presented. These are a yes-yes, yes-no, 

no-yes and a no-no outcome. The result for this is exiled in Table 4.3 of the Annex.  

 

4.4.3.2 Parametric Estimation of the Willingness to Pay 

Mean willingness to pay and the determinants of willingness to pay (which was the 

willingness to pay for a pre-determined bid for weather index insurance) were jointly 

estimated using a Double Bounded Log-Logistic regression model. The model included 

independent variables that could help to explain farmers’ willingness decision to engage 

with agriculture insurance markets. These included both continuous and dummy 

variables i.e. socio-economic and institutional variables. A priori inspection was 

implemented to ensure that the model satisfied certain requirements. First, the variables 

included in the model were checked for multicollinearity if at all present was within the 

tolerable range. This was done using the Variance Inflation Factor (VIF), for which 

results are presented in Table 1 of the Appendix. The results showed that all variables 

included in the model, not embody a serious level of multicollinearity. All variables 

registered a VIF value which was far from the cut-off point of 10. Further analysis of 

the association of dummy variables (Table 2 of Appendix) did not warrant a serious 

level of association. 

 

After the aforementioned tests, the double bounded log-logistic regression was 

implemented in R Environment using the DCchoice package. The results of the model  
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Table 4. 7: Determinants of the willingness to pay for weather index insurance 

Predictor Coefficient Std 

Error 

p-value Margin 

Effects 

P-

value 

Constant  8.870 0.493 0.000 - - 

Age 0.3750 0.4710 0.212 0.1293 0.212 

Age squared -0.4423 0.5532 0.212 -0.1510 0.212 

Gender -0.0660 0.0260 0.006 -0.0220 0.006 

Education 0.4160 0.0780 0.000 0.1434 0.000 

Experience of climate shocks 0.2221 0.0123 0.000 0.0716 0.000 

Access to extension service 0.3850 0.1700 0.012 0.1328 0.012 

Log(Household income) 0.3487 0.0710 0.000 0.1224 0.000 

Family size -0.0201 0.0371 0.295 -0.0069 0.295 

Maize Farm size (Ha) 0.5410 0.2140 0.006 0.1866 0.006 

Farming experience 0.2650 0.0740 0.000 0.0883 0.000 

Remittances received  -0.2322 0.0410 0.000 -0.0774 0.000 

Use of DT Variety 0.5313 0.1282 0.000 0.1660 0.000 

Livestock ownership 

(poultry) 
0.3744 0.1369 

0.003 0.0013 0.003 

Livestock ownership (Large) -0.4244 0.1121 0.000 -0.1458 0.000 

Previous Food Security 

Status 
-0.5516 0.1467 

0.000 -0.1839 0.000 

log(bid) -1.1761 0.0485 0.000 -0.1307 0.000 

Observations (N) 1170     

AIC (BIC) 1897 (1928)     

LR statistic 54.2  0.000   

WTP Estimates  

Point Estimate Estimate Confidence Interval   

LB UB   

Mean 10,885.6 7,554.6 21,432.3   

Truncated Mean  6,785.4 6,537.1 7,066.6   

Adjusted truncated Mean 7,084.2 6,774.9 7,466.0   

Median 4,847.3 4,658.2 5,040.7   

 

are presented in Table 4.7. The model had a Likelihood Ratio Chi-square statistic of 54, 

which was significant at 1%. This measures the overall significance of the model. This 
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result shows that variables included in the model were jointly explaining the variation 

in farmers WTP for weather index insurance with a high level of goodness of fit. 

Worth mentioning that in the family of probit and logit, the coefficients that are directly 

reported by the model do not explain the magnitude of the effects of the variables on 

the dependent variables. They only show the direction of effect, as such, cannot be 

reasonably interpreted directly. For that reason, the model presents both the coefficients 

and the marginal effects that are derived from the model. Green (2002) interprets 

marginal effects as the expected probability of choosing a particular choice given that 

there is a unity change in the given independent variable while holding all other factors 

constant. The second column in the table presents the coefficient estimates, and the last 

but one presents the marginal effects for the regressors. A total of 16 variables were 

included in the model. Out of these, 13 variables were significant in explaining farmers’ 

WTP.  

 

Gender of the household head proved to be negatively related to Willingness to Pay for 

weather index insurance. Gender is a dummy variable, with Male coded one and females 

coded 0. Both the coefficient and its marginal effect are significant. The meaning is that 

keeping all other variables constant, being male decreased the probability of 

Willingness to Pay for weather index insurance by 2%. This is an expected result for 

weather insurance that focuses on food crops like maize. The results show that men 

were more risk-averse to paying for weather insurance for maize crop. This is in line 

with what other studies have established that women are concentrated on food crop 

production while men’s attention goes much to high-value cash crop production (Hill, 

et al., 2014). For this reason, there is likely to be intrahousehold resource competition 

towards the crop type the draws the attention of each gender category. Women will seek 
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investments that increase the resilience of their food crops, like weather index 

insurance, while men would like to allocate the same resources to their cash crops. The 

result goes against Dong et al. (2003), who established that men were more willing to 

pay for community-based insurance in Burkina Faso 

 

Level of education was another predictor of Willingness to Pay. The coefficient of 

education for the model shows that education was important in explaining willingness 

to pay for weather index insurance positively. This result was in line with prior 

expectations (Senapati, 2020).  Similarly, the marginal effect was positive and 

significant. This implied that holding other factors constant, the education level of the 

farmer will positively influence adoption behaviour for weather index insurance. This 

is so because an educated person is able to calculate the potential losses in the event that 

there is a weather shock and compare with that they can trade of as an insurance 

premium and what they could get in return as a payout. In the same vein, access to 

extension advice was positively related to Willingness to Pay. Those who had access to 

extension advice were 13% likely to be willing to pay for weather insurance. Just like 

education, extension advice informs the farmers about weather shocks and risk 

management strategies. As such, those farmers who interface with extension officers 

tend to be more knowledgeable and willing to pay for weather index insurance. This 

becomes consistent with their rationality as utility-maximizing economic agents. 

Similar to this is the years of experience in farming. This was defined as the number of 

years the farmer has been farming as an independent unit. Model results show that a 

marginal increase in years of experience will trigger an 8% probability increase in the 

willingness to pay for weather index insurance. Experience is the best teacher, through 

which a farmer not only hears about the negative effects of weather-related shocks on 
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their crop production but rather experience the effects. This triggers them to take 

remedial actions towards weather-related shocks proactively than someone who is a 

first-timer in crop agriculture. The results are in line with  Fahad et al. (2018) for the 

key factors influencing farmers crop insurance decisions in Pakistan. 

 

The average monthly earnings of the farmer was a strong predictor of willingness to 

pay. This is expected as the payment vehicle for the hypothetical insurance market 

presented to the farmers was cash which directly draws from their earnings. From the 

marginal effects for average income earnings (in log terms) variable, it shows that 

income has a positive marginal effect on the farmers choice of insurance uptake. An 

increase in income of the farmers will shift their budget constraint outwards at both 

pivotal ends as such insurance product becomes a monotonic increasing function of 

farmers income. Farmers can thus, easily substitute other products for insurance 

products and still remain on the same indifference curve. 

 

Farmers as rational agents operate within the framework of their knowledge and past 

experiences. Specific in this study was the experience of climate shocks in the past two 

years. The result shows a positive relationship between having experienced climate 

shocks recently and the willingness to pay for weather index insurance. The farmers 

that reported to have experienced droughts or floods in the past two years were more 

willing to pay for insurance than those who had never recently experienced such shocks. 

Those who experienced shocks must have been more aware of the negative 

consequences of weather shocks on crop output and hence more willing to invest in risk 

management strategies that would help them smooth out the post-disaster food security 

situation in future.  
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Family size, that is, the number of persons in the farming households, has a negative 

relationship with Willingness to Pay. The effect is not significant, and its magnitude is 

not big. Every additional member to the household reduces the probability of 

willingness to pay for weather index insurance by 0.6%. The increasing number of 

members in the household puts pressure on the household’s resources. As such, the 

resources cannot be easily allocated to uses that have medium to long-run returns when 

there is a dependency burden in the household requiring more expenditure financing 

now. 

 

The study also explored the effect of maize farm size on farmers willingness to 

subscribe for weather index insurances. This factor was significant both for the 

coefficient and the marginal effect in the positive direction. When maize farm size 

increases by a hectare, the probability of willingness to sign up for weather index 

insurance increases by 18%. This result makes sense in such a way that farmers with 

big maize fields have high anticipated economic losses compared to farmers who have 

smaller maize fields in terms of costs of production and also the potential yield. A 

weather shock on a small maize field will result in a lower level of economic losses. As 

such, there is less incentive for farmers’ interest in weather index insurance. The result 

could also mean that farmers with smaller maize fields have more diversified crop 

agriculture, and the risk of total crop failure due to droughts is minimized, whereas those 

farmers with big maize fields will be more specialized toward one main crop and the 

risk of total crop failure is high. In that regard, they find it more rational to hedge against 

such by sharing the risk with insurance companies.  
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Remittances play a vital role in smoothening household consumption. In this study, 

remittances were found to be negatively related to the farmer's decision to pay for 

weather index insurance. That is, farmers who were receiving remittances were less 

likely to be willing to subscribe for weather insurance compared to those who were not 

receiving any remittance. Given these two types of farming households, in the presence 

of a weather shock on their crop production, those who have inflows from remittances 

will easily use it to substitute failed crop production and maintain their food security 

stand. At the same time, those with no access to remittances will have to sell out their 

labour to get some more earnings which could compensate for their failed production 

(attain their lost utility). As such, the latter households will be more willing to pay for 

the weather index, so they remain on the same utility point, without trading their labour, 

when a weather shock strikes.  

 

The use of weather insurance is not the only option that farmers can do to minimize the 

risk of weather shocks on crop production. The study found that some farmers are using 

Drought Tolerance (DT) maize varieties which are more resilient to droughts and dry 

spells. Further analysis of DT maize varieties uptake showed that the adopters of these 

varieties were 18% more likely to be willing to pay for weather insurance. Adoption of 

DT varieties in the first place shows that someone is informed about the effects of 

weather shocks, and by adopting, they are trying to minimize those risks. As such, it is 

not strange to see that there is more willing to pay for weather insurance products by 

the adopters than non-adopters.  

 

Livestock endowment is also an important predictor of willingness to pay for weather 

insurance. Livestock is of two types: small livestock, which includes poultry, and big 
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livestock includes ruminant and non-ruminant livestock. These two types of livestock 

have divergent outcomes in shaping willingness to pay for weather index insurance. 

Farmers who are engaged in small livestock keeping were more willing to pay for 

weather index insurance than those who keep large livestock. In magnitude terms, the 

likelihood of big livestock keeping farmers not being willing to pay for weather 

insurance outweighed the likelihood of small livestock farmers’ willingness to pay for 

the insurance product. The reason could be; most farmers who keep large livestock use 

it as a safety net in times of shocks. They can easily liquidate it and use the cash to 

compensate for the agriculture output loss. On the other hand, for small livestock, the 

farmer usually keeps these for emergency expenses not big enough to cover agriculture 

output loss.  

 

Lastly, the food security history of the household was very important in explaining 

willingness to pay for weather index insurance. Households that did not experience a 

food insecurity spell in the last production season were not as willing to pay for weather 

index insurance compared to those who had fresh memories of their food insecurity 

experience.  

 

The estimates of Willingness to Pay for weather index insurance have been derived 

using different algorithms. The results of these estimates are presented in the lower 

panel of Table 7 of results. First, the expected Willingness to Pay computed was based 

on the unmodified error distribution. This yielded the highest willingness to pay an 

estimated MK10,885.6. The confidence interval for the estimates are presented in the 

last two columns, both the lower bound and the upper bound. The second estimate of 

willingness to pay is based on the assumption that the error distribution is truncated at 
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the maximum bid. This yielded an estimated MK5,785.4.  Slightly similar to this 

measure is the Adjusted truncated mean (MK7,084), which is adjusted following the 

Boyle et al. (1988) routine. The final estimate of the willingness to pay is the median 

which is estimated to be MK4,847.3.  

 

4.4.3.3 Non-Parametric Estimation of the Willingness to Pay 

The Kaplan–Meier–Turnbull survival probability estimates of Willingness to pay are 

estimated and summarized in Figure 4.3. Three estimates of the WTP estimates are 

reported. These include; the Kaplan–Meier mean estimate, the Spearman–Karber mean 

estimate, and the median estimate. Essentially, these estimates are based on the area 

under the empirical survival function, Figure 2. For the Kaplan–Meier estimate, it is 

computed as a rectangular area under the empirical survival curve all the way to the 

maximum bid. For Spearman–Karber estimates, it is computed as the area under the 

survival curve up to the x-intercept. The results yielded a Kaplan–Meier means of 

MK4,487, a Spearman–Karber of MK5,602 and a median of the interval of MK4000 to 

MK6000 (Table 8). These estimates can be compared with their parametric counterparts 

reported in the previous section (Table 4.8). I find that these estimates are more 

conservative than the parametric estimates. These could be considered as the legal 

minimum WTP in the context of weather index crop insurance.  

 

Table 4. 8: Non-parametric Estimates of Willingness to Pay (MK/Ha Maize) 

Estimator Point Estimate Interval Estimate  

  Lower Bound Upper Bound 

Kaplan–Meier 4,487   

Spearman–Karber 5,602   

Median - 4000 6000 
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Figure 4. 3: Kaplan–Meier–Turnbull estimate of the empirical survival function for 

Willingness to Pay 
 

4.5 Conclusions and Recommendations  

Agriculture, especially cereal production in the tropics, are marred by several risks, 

mostly those related to climate change. The common of these include droughts and 

floods. When communities record episodes of these covariate risks, the existing coping 

mechanisms do not work due to a failed market system at the community level, unlike 

idiosyncratic shocks that are specific to households. In view of this, several countries in 

the tropics have embarked on pilot programs for crop insurance. Nevertheless, uptake 

of the insurance will depend on farmers’ willingness to pay for the cost of this risk 

management strategy is to be sustainable. In Malawi, the concept of crop insurance is 

still infant despite being first piloted more than a decade ago. It remains unclear whether 

farmers would be interested in purchasing weather insurance products. This study, 

therefore, was set out to assess the demand side of weather index insurance for maize, 

which is one of the major food crops that define food security in Malawi. This study 



 

193 
 

employed contingent valuation methods to explore the willingness of farmers to pay for 

weather index insurance for a hectare of maize.  

 

The study used double-bounded questions and a semi-structured questionnaire to 

compile information about the surveyed farmers. A total of 1170 complete interviews 

were conducted distributed across six districts in all regions of Malawi. To reinforce 

understanding of willingness to pay and underlying factors, econometrics-based 

methods were used. The study employed a double bounded contingency valuation 

technique which used a log-logistic regression model. Four variants of willingness to 

pay estimates were computed, all of which point to the potential for weather index 

insurance markets in Malawi. 

 

The descriptive statistics showed that most of the farming families surveyed were 

headed by men, married, attended some level of primary education and were low-

income earners. It furthers shows that risk management in agricultural practices is not 

a new concept. Farmers are already engaging in a number of climate-smart agricultural 

practices to mitigate against the potential risks that come as a result of the climate-

related shocks. These risk management strategies included the adoption of minimum 

tillage, crop residues, intercropping, agroforestry, irrigation, drought-tolerant varieties, 

crop diversification, conservation agriculture. Some farmers are even using a 

combination of several of these risk mitigation strategies to make sure that they deepen 

their production resilience capacity.  

 

The results have shown that weather insurance product is a normal good with a well 

behaved downward sloping demand schedule. With the increase in premium, the 
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demand is expected to go down. Willingness to pay for weather index insurance was 

found to be affected by a number of demand factors. The most important factors 

included gender, education, the previous record of climate shocks, extension contact, 

family size, experience in farming, access of remittances, current use of drought-

tolerant varieties, household food security history and livestock endowment. Both 

parametric and non-parametric estimates of willingness to pay were within the same 

range of shots between MK4000 to MK7000. Although they fall within the relatively 

same interval, I find that the non-parametric estimates are more conservative than the 

parametric estimates. 

 

Having established the mean willingness to pay by farmers for the weather index 

insurance, it only provides the demand-side analysis. Further studies need to be 

commissioned to undertake an analysis from the supply side and establish the optimal 

pricing rate. This optimal pricing rate could be compared with what the farmers are 

currently willing to pay. If the optimal pricing rate is higher than what the farmers are 

willing to pay, the government can think of rolling out a subsidy programme for weather 

index insurance. It could begin with weather shocks hotspots, and scale-out along the 

way to other areas. Alternatively, the government can support the subsidy component 

of the insurance policy by engaging the interested farmers in public works programs 

where they can provide labour, and instead of receiving cash for their labour, the 

government could make transfers directly to the insurance company for a well-defined 

weather index insurance product.  

 

Education level of farmers, extension contact, previous episodes of shocks and 

experience in farmers were positive predictors of willingness to pay. All these factors 
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point to the level of knowledge that the farmer has accumulated through various forms. 

To take advantage of these factors, the government and development actors could 

leverage the presence of extension officers in the marketing and delivery of weather 

index insurance products. As farmers deepen their knowledge of weather index 

insurance, including its benefits, we could see more farmers willing to purchase the 

product and, in turn, minimize the negative effects of weather-related shocks that are 

covered by weather index insurance policy. 

 

The income of the farmers was also a very important factor in determining willingness 

to pay. They are already a number of initiatives by the government that focus on 

boosting farmers income. There is a need for streamlining these initiatives and focus 

efforts so that as farmers income increase, there will be a corresponding increase in 

demand for weather index insurance products. For non-farm sources of income, it is 

expected that it would be coming to the farmer in bits, and it may not be easy for the 

farmer to raise the amount for insurance subscriptions at once. As such, it is imperative 

to link the concept of crop insurance with the community-saving groups (commonly 

known as Village Savings and Lending Associations). Through these, farmers can have 

targets to gradually save the amount equivalent to the insurance premium fees such that 

as the time approaches the beginning of the cropping season, farmers will have saved 

enough to purchase crop insurance. 
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Appendix 

Appendix A4.1. VIF Test of multicollinearity 

Variable VIF 1/VIF 

Age 1 1.000 

Age squared 1.69 0.592 

Gender 1 1.000 

Education 1.3 0.769 

Experience of climate shocks 1.16 0.862 

Access to extension service 1.01 0.990 

Log(Household income) 1.64 0.610 

Family size 1.29 0.775 

Maize Farm size 1.16 0.862 

Farming experience 1.05 0.952 

Remittances received in past 12 months 1.03 0.971 

Use of DT Variety 1.39 0.719 

Livestock ownership (poultry) 1.18 0.847 

Livestock ownership (Large) 1.25 0.800 

Previous Food Security Status 1.23 0.813 

Average 1.23 0.816 
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Appendix A4.2. Contingency Coefficient for Dummy Variables. 

Variable 

Gender 

Experience 

of climate 

shocks 

Access to 

extension 

service 

Remittances 

received in 

past 12 

months 

Use of 

DT 

Variety 

Livestock 

ownership 

(poultry) 

Livestock 

ownership 

(Large) 

Previous 

Food 

Security 

Status 

Gender 1        

Experience of climate shocks 0.084 1       

Access to extension service 0.149 0.179 1      

Remittances received in past 12 months 0.127 0.217 0.059 1     

Use of DT Variety 0.219 0.149 0.239 0.166 1    

Livestock ownership (poultry) 0.214 0.2 0.181 0.081 0.239 1   

Livestock ownership (Large) 0.135 0.144 0.058 0.156 0.076 0.099 1  

Previous Food Security Status 0.103 0.192 0.066 0.152 0.191 0.077 0.15 1 
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Joint distribution of the Dichotomous choice responses 

As can be depicted from the Table, the No-No comprises the largest proportion of the 

sample followed by a yes-no. About 21% of the respondents answered yes in first place and 

no in the follow-up question. Ten percent of the farmers did not reject any bid in both stages 

of the game. About 14% of the farmers started by rejecting the bid but were comfortable 

with the follow-up bid. The presence of some farmers who are willing to pay for the product 

signifies that weather index insurance market has potential in the studied districts.  

 

Table 3. Joint distribution of the willingness to pay for weather index insurance 

Willingness Outcome Frequency  Percentage 

Yes – Yes  121 10.34 

Yes – No  253   21.62 

No – Yes  174 14.87 

No – No  622 53.16 

Total 1170 100 
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CHAPTER 5 

 GENERAL CONCLUSIONS 

5.1 Conclusions and implications 

In agriculture production, growing season temperature and rainfall are two primary factors 

determining crop yield outcomes. This thesis has analyzed three different areas relating to 

climate impacts on agriculture production. 

 

The focus of chapter 2 was on the economic impacts of climate change on agriculture. This 

chapter examined the current and potential economic impacts of global warming and 

precipitation change on Malawi’s agricultural production based on Ricardian analysis 

based on a three-year panel for Living Standards Measurement Survey (LSMS) data from 

3,531 farming households. The model estimates showed that more warming negatively 

affects agriculture returns on the one hand, while more precipitation generates gains on the 

other hand. Additionally, simulation with Global Circulation Models showed that impacts 

from global warming would be more important than those from precipitation change. The 

impacts are heterogenous to production efficiency, with technically efficient farmers 

having moderate impacts in magnitude relative to inefficient farmers. With strategic 

climate adaptation choices, results show potential to abate some of the damages and 

enhance positive gains from future climate change. 
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Chapter 3 examined the farmers' vulnerability to expected poverty under climate-induced 

stresses in Malawi. Specifically, the study sought to i) Quantify the magnitude of climate 

stress-induced vulnerability to poverty among farming households; ii) quantify the effects 

of ex-ante climate stress-induced vulnerability on ex-post poverty and; iii) To quantify the 

relative effects of climate-related stresses on poverty transition. The study also used a panel 

version of Living Standards Measurement Survey (LSMS) data collected over the period 

of 2010 to 2016 in Malawi. I find that 47% of the studied farmers were vulnerable to climate 

stresses in 2013, and 58% of farmers were vulnerable to 2016 climate-related stresses. 

Expanding the time slice of analysis shows that vulnerability will be associated strongly 

with short-run climate stresses and less so with the long-run climate-related chocks. The 

study also finds that there is a significant linkage between ex-ante vulnerability and ex-post 

poverty. Similarly, the effects of vulnerability on actual poverty lessen with time to spell 

occurrence. Using a method that corrects selection bias, unlike previous studies, we find 

that Climate-related stresses worsened the welfare of farming households and affected the 

transition of farmers out of poverty. The study underscores the importance of livestock and 

off-farmer income diversification in buffering against poverty through serving a safety net. 

 

Chapter 4 assessed the demand side of weather index insurance for maize, which is one of 

the major food crops that define food security in Malawi. I employed contingent valuation 

methods to explore the willingness of farmers to pay for weather index insurance for a 

hectare of maize. A total of 1170 complete interviews were conducted distributed across 

six districts in all regions of Malawi. The results showed that farmers are already engaging 

in a number of climate-smart agricultural practices to mitigate against the potential risks 
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that come as a result of the climate-related shocks. These risk management strategies 

included the adoption of minimum tillage, crop residues, intercropping, agroforestry, 

irrigation, drought-tolerant varieties, crop diversification, conservation agriculture. 

Willingness to pay for weather index insurance was found to be affected by a number of 

demand factors. The most important factors included gender, education, the previous record 

of climate shocks, extension contact, family size, experience in farming, access of 

remittances, current use of drought-tolerant varieties, household food security history and 

livestock endowment. It was also established that, on average, farmers would be willing to 

pay MK10,885.6 for a hectare of maize field in a given cropping season. There are already 

a number of initiatives by the government that focus on boosting farmers’ income. There 

is a need for streamlining these initiatives and focus efforts so that as farmers’ income 

increase, there will be a corresponding increase in demand for weather index insurance 

products. It is also imperative to link the concept of crop insurance with the community-

saving groups.  

 

Finally, while this study focused on the farm level to explain national-level dynamics of 

climate and agriculture nexus, some more study needs to be conducted focusing on the 

macro-level. The new study could use general equilibrium models to explore how climate 

change is affecting the agriculture sector and how other sectors are helping to reproof 

resilience of the same. Furthermore, another trajectory would be to explore climate impacts 

on non-crop livelihoods for the studied farmers.  
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